Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường chuyên Quốc học Huế

Chủ Nhật ngày 05 tháng 07 năm 2020, trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán lần thứ hai năm học 2019 – 2020 dành cho học sinh khối 12. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường chuyên Quốc học Huế mã đề 143 gồm có 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 143, 295, 387, 415. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường chuyên Quốc học Huế : + Biết rằng các số log a; log b; log c theo thứ tự đó lập thành cấp số cộng, đồng thời log a – log 2b; log 2b – log 3c; log 3c – log a theo thứ tự đó cũng tạo thành một cấp số cộng. Tìm khẳng định đúng? A. Không có tam giác nào có ba cạnh là a, b, c. B. a, b, c là ba cạnh của một tam giác tù. C. a, b, c là ba cạnh của một tam giác vuông. D. a, b, c là ba cạnh của một tam giác nhọn. [ads] + Giả sử hàm số y = mx^4 – (m^2 + 2)x^2 + (m^3 + 11m)/9 có đồ thị (C) và hàm số y = x^2 có đồ thị (C) cắt nhau tại bốn điểm phân biệt. Biết rằng hình phẳng (H) giới hạn (C) và (C) là hợp của ba hình phẳng (H1), (H2), (H3) có diện tích tương ứng là S1, S2, S3 trong đó 0 ≤ S1 ≤ S2 ≤ S3 và các hình phẳng (H1), (H2), (H3) đôi một giao nhau tại không quá một điểm. Gọi T là tập hợp các giá trị của m sao cho S3 = S1 + S2. Tính tổng bình phương các phần tử của T. + Cắt một vật thể (T) bởi hai mặt phẳng (P) và (Q) vuông góc với trục Ox lần lượt tại các điểm có hoành độ x = a và x = b (a < b) (xem hình). Một mặt phẳng tùy ý vuông góc với Ox tại điểm có hoành độ x (a ≤ x ≤ b) cắt (T) theo thiết diện có diện tích là S(x). Giả sử S(x) liên tục trên đoạn [a;b]. Khi đó thể tích V của phần vật thể (T) giới hạn bởi hai mặt phẳng (P) và (Q) được tính bởi công thức nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GDĐT Sóc Trăng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở Giáo dục và Đào tạo tỉnh Sóc Trăng (mã đề 211); kỳ thi được diễn ra vào ngày … tháng 05 năm 2024. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GD&ĐT Sóc Trăng : + Một cái cổng chào bằng hơi có chiều cao so với mặt đất 11 m (không tính phần phao chứa không khí), chân của cổng chào tiếp xúc với mặt đất theo một đường tròn có đường kính là 2 m và bề rộng của cổng chào là 22 m (không tính phần phao chứa không khí). Bỏ qua độ dày của lớp vỏ cổng chào. Tính thể tích không khí chứa bên trong cổng chào. + Cho khối nón có góc ở đỉnh bằng 60 độ dài đường cao bằng 4. Xét khối tứ diện đều OABC có một đỉnh trùng với tâm đường tròn đáy, ba đỉnh còn lại nằm trên các đường sinh và nằm trong mặt phẳng song song với đáy của khối nón. Tính thể tích khối tứ diện OABC (làm tròn đến hàng phần trăm). + Trong không gian Oxyz, cho hai điểm A(2; 1; 3) và B(6; 5; 5). Xét khối chóp tứ giác đều đỉnh A, nội tiếp mặt cầu đường kính AB. Khi khối chóp có thể tích lớn nhất thì mặt phẳng chứa mặt đáy của khối chóp có dạng 2x by cz d 0. Giá trị của bcd bằng?
Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GDĐT Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 11 tháng 05 năm 2024; đề thi có đáp án mã đề 101 105 109 113 117 121 102 106 110 114 118 122 103 107 111 115 119 123 104 108 112 116 120 124. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GD&ĐT Cà Mau : + Trên một mảnh đất hình vuông có diện tích 2 121m người ta đào một cái ao nuôi cá hình trụ sao cho tâm của hình tròn đáy trùng với tâm của mảnh đất. Ở giữa mép ao và mép mảnh đất người ta để lại một khoảng đất trống để đi lại, biết khoảng cách nhỏ nhất giữa mép ao và mép mảnh đất là x(m). Giả sử chiều sâu của ao cũng là x(m) (tham khảo hình vẽ bên dưới). + Xét các số phức z w 4 thỏa mãn z = 1 và 4 w là số thuần ảo. Gọi (H H 1 2) lần lượt là tập hợp điểm biểu diễn của số phức z w và Ax y Bx y là giao điểm của (H H 1 2) với 2 1 y0. Khi đó 12 1 2 Tx y 4 8 bằng? + Trong không gian Oxyz cho ba mặt phẳng (P x y z) 2 2 5 0 (Q x y z) 2 2 1 0 (R x yz) 2 2 3 0. Một đường thẳng ∆ thay đổi cắt ba mặt phẳng (PQR) lần lượt tại A B C. Giá trị nhỏ nhất của biểu thức 2 216 M AB AC bằng?