Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Tiên Du - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; đề thi hình thức 100% tự luận, thời gian 120 phút (không kể thời gian giao đề), đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Tiên Du – Bắc Ninh : + Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên Ax, không trùng với A. Gọi E là điểm đối xứng với A qua OM. a) Chứng minh rằng ME là một tiếp tuyến của nửa đường tròn (O). b) Đoạn OM cắt nửa đường tròn (O) tại I. Chứng minh I là tâm đường tròn nội tiếp của tam giác AME. c) Gọi N là trung điểm EB. Tia ME cắt ON tại P. Hãy xác định vị trí của điểm M trên tia Ax để diện tích tam giác OMP đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo R. d) Gọi C là giao điểm của BE và tia Ax, OC cắt AE tại Q. Kẻ đường thẳng qua Q và song song với Ax, cắt OM tại D. Chứng minh A, D, P thẳng hàng. + Cho hai đường thẳng d mx y d x m y m 1 2 với m 1. 1) Chứng minh rằng đường thẳng d1 đi qua điểm A cố định, đường thẳng d2 đi qua điểm B cố định với mọi m 1. 2) Viết phương trình đường thẳng đi qua hai điểm A và B. + Cho a, b, c là các số nguyên thỏa mãn ab bc ca chia hết cho 3. Chứng minh rằng nếu 3 3 3 abc chia hết cho 3 thì 3 3 3 abc chia hết cho 27.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 - 2021 sở GDĐT Bình Dương
Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Dương gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Dương : + Cho 40 số nguyên dương thay đổi sao cho có tổng bằng 58. Tìm giá trị lớn nhất và giá trị nhỏ nhất của tổng các bình phương của chúng. + Giả sử ba số thực a, b, c thỏa mãn điều kiện a > 0, bc = 3a, a + b + c = abc. Chứng minh rằng: a21 + 213. + Cho tam giác ABC cân tại A, có đường tròn nội tiếp (I). Các điểm E, F theo thứ tự thuộc các cạnh CA, AB (E khác C và A; F khác B và A) sao cho EF tiếp xúc với đường tròn (I) tại điểm P. Gọi K L lần lượt là hình chiếu vuông góc của E, F trên BC. Giả sử FK cắt EL tại điểm J. Gọi H là hình chiếu vuông góc của J trên BC. a) Chứng minh rằng HJ là phân giác của góc EHF. b) Ký hiệu S1, S2 lần lượt là diện tích của tứ giác BFJL và CEJK. Chứng minh rằng: BP2 V 5 CE. c) Gọi D là trung điểm cạnh BC. Chứng minh rằng ba điểm P, J, D thẳng hàng.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Thái Nguyên
Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thái Nguyên gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Thái Nguyên.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Hà Nam. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Hà Nam : + Trong mặt phẳng Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = mx + 2 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 5 (đơn vị diện tích). + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H, EF cắt (O) tại P và Q (P thuộc cung nhỏ AB). a) Chứng minh tam giác APQ cân. b) Chứng minh DH.DA = DE.DF. c) Lấy điểm M đối xứng với điểm P qua AB, điểm N đối xứng với điểm Q qua AC. Chứng minh MN // BC. + Cho đường tròn (I) nội tiếp tam giác ABC, (I) tiếp xúc với ba cạnh  BC, CA, AB lần lượt tại các điểm D, E, F. Gọi M là trung điểm của BC. Chứng minh các đường thẳng AM, EF, DI đồng quy.