Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2019 - 2020 sở GDĐT Hà Nam

Thứ Sáu ngày 22 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Hà Nam tổ chức kỳ thi tuyển chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2019 – 2020. Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2019 – 2020 sở GD&ĐT Hà Nam gồm 01 trang với 06 bài toán, học sinh có 150 phút để làm bài thi. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2019 – 2020 sở GD&ĐT Hà Nam : + Cho tam giác đều ABC nội tiếp đường tròn (O; R), M là một điểm bất kỳ trên cung nhỏ BC (M không trùng với B và C). Đường tròn (O0, R0) với (R0 > R) tiếp xúc trong với đường tròn (O; R) tại điểm M. Các đoạn thẳng MA, MB, MC lần lượt cắt đường tròn (O0 ; R0) tại điểm thứ hai là D, E, F. Từ A, B, C kẻ các tiếp tuyến AI, BJ, CK với đường tròn (O0 ; R0), trong đó I, J, K là các tiếp điểm. Chứng minh rằng DE song song với AB và AI = BJ + CK. [ads] + Cho tam giác nhọn ABC nội tiếp đường tròn (O; R), các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. Đường thẳng AD cắt đường tròn (O; R) tại điểm thứ hai là M. Đường thẳng qua H và vuông góc với OA cắt BC tại K. a) Chứng minh BAH = OAC. b) Chứng minh đường thẳng KM là tiếp tuyến của đường tròn (O; R). c) Giả sử điểm A cố định, các điểm B, C thay đổi trên đường tròn (O; R) thỏa mãn AB.AC = 3R2. Khi tam giác ABC có diện tích lớn nhất, tính độ dài đoạn thẳng OF. + Cho hai số m, n nguyên dương thỏa mãn m là ước của 2n2. Chứng minh rằng n2 + m không phải là số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG Toán 9 năm 2023 - 2024 phòng GDĐT Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Trích dẫn Đề chọn đội tuyển thi HSG Toán 9 năm 2023 – 2024 phòng GD&ĐT Vinh – Nghệ An : + Chứng minh rằng không thể tồn tại đa thức P(x) bậc 2 với hệ số nguyên nhận 33 làm nghiệm. + Cho tam giác ABC nhọn (AB < AC), đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với ba cạnh BC, CA, AB lần lượt tại D, E, F. Đường thẳng EF cắt AI tại J và cắt đường thẳng BC tại S. a) Chứng minh: Tam giác IDA đồng dạng với tam giác IJD. b) Gọi T là giao điểm của ID và EF. Chứng minh: TI.TD = TJ.TS và IS vuông góc với AD. c) Qua E kẻ đường thẳng song song với BC cắt AD, DF tại M, N. Chứng minh M là trung điểm của EN. + Trong mặt phẳng kẻ 2022 đường thẳng phân biệt sao cho không có hai đường thẳng nào song song và không có ba đường thẳng nào đồng quy. Tam giác tạo bởi ba đường thẳng trong số các đường thẳng đã cho tạo thành tam giác đẹp nếu nó không bị đường thẳng nào trong số các đường thẳng còn lại cắt. Chứng minh rằng số tam giác đẹp không ít hơn 674.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Đà Lạt - Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thành phố Đà Lạt, tỉnh Lâm Đồng. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Đà Lạt – Lâm Đồng : + Một khúc sông rộng khoảng 240 m. Một chiếc thuyền dự định chèo qua sông theo hướng vuông góc với hai bờ nhưng do nước chảy siết, chiếc thuyền bị dòng nước đẩy nên phải chèo khoảng 480 m mới tới bờ bên kia (hình minh họa ở bên). Hỏi dòng nước đã đẩy chiếc thuyền đi một góc bao nhiêu độ? + Một nhóm bạn trẻ cùng tham gia khởi nghiệp và dự định góp vốn là 240 triệu đồng, số tiền góp mỗi người là như nhau. Nếu có thêm 2 người tham gia cùng thì số tiền mỗi người góp giảm đi 4 triệu đồng. Hỏi nhóm bạn trẻ đó có bao nhiêu người? + Tất Minh là một học sinh khuyết tật nhưng luôn nỗ lực, cố gắng vươn lên trong học tập với nhiều thành tích ấn tượng. Câu chuyện bạn Minh Hiếu suốt 10 năm cõng Tất Minh đi học không kể nắng mưa, cuối cùng cả hai bạn đều trở thành học sinh giỏi tỉnh và thi tốt nghiệp trên 28 điểm đã để lại cho đời một tình bạn đẹp giữa đời thường. Quãng đường Minh Hiếu cõng bạn từ nhà đến trường gồm một đoạn lên dốc dài 1 km, đoạn xuống dốc dài 1,5 km. Minh Hiếu, cõng bạn từ nhà đến trường mất 11/20 giờ và cõng bạn từ trường về nhà mất 23/40 giờ. Biết vận tốc lúc lên dốc và xuống dốc của bạn Minh Hiếu là không đổi, tính vận tốc khi Minh Hiếu cõng bạn lúc lên dốc và lúc xuống dốc.
Đề khảo sát HSG Toán 9 lần 5 năm 2023 - 2024 trường Hồng Phương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh giỏi môn Toán 9 lần 5 năm học 2023 – 2024 trường TH & THCS Hồng Phương, huyện Yên Lạc, tỉnh Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 9 lần 5 năm 2023 – 2024 trường Hồng Phương – Vĩnh Phúc : + Cho tam giác nhọn ABC đường cao CK H; là trực tâm của tam giác. Gọi M là một điểm trên CK sao cho 0 AMB 90. Gọi 1 2 SS theo thứ tự là diện tích các tam giác AMB ABC ABH. a) Chứng minh : HK CK AK BK. b) Chứng minh: 1 2 S S. + Cho tam giác đều ABC, đường cao AH. Lấy điểm M nằm giữa B và C, vẽ MD vuông góc với AB tại D, ME vuông góc với AC tại E. Tìm vị trí của điểm M trên BC để diện tích MDE lớn nhất. + Bảy người câu được 100 con cá. Biết rằng không có hai người nào câu được số cá như nhau. Chứng minh rằng có ba người câu được tổng cộng không ít hơn 50 con cá.
Đề khảo sát HSG Toán 9 lần 4 năm 2023 - 2024 trường Hồng Phương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh giỏi môn Toán 9 lần 4 năm học 2023 – 2024 trường TH & THCS Hồng Phương, huyện Yên Lạc, tỉnh Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 9 lần 4 năm 2023 – 2024 trường Hồng Phương – Vĩnh Phúc : + Cho tam giác ABC nhọn có các đường cao AA’, BB’, CC’ cắt nhau tại H. Gọi D là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với DH cắt AB, AC lần lượt tại M và N. Chứng minh rằng: a) HM AH HD CD b) ∆DMN là tam giác cân. + Một cửa hàng ban đầu niêm yết giá cho một chiếc điện thoại là 12 000 000 đồng. Sau đó cửa hàng đã giảm giá chiếc điện thoại này hai đợt, mỗi đợt đều giảm giá là m% so với giá trước đó. Sau hai đợt giảm giá, cửa hàng đã bán chiếc điện thoại này với giá 7 680 000 đồng. Hỏi mỗi đợt cửa hàng đã giảm giá bao nhiêu phần trăm? + Cho phương trình 1 21 1 3 7 a a x (ẩn x a là tham số). Hãy tìm tất cả các giá trị của a để phương trình trên có nghiệm âm.