Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán THCS năm 2022 2023 phòng GD ĐT Cát Tiên Lâm Đồng

Nội dung Đề học sinh giỏi huyện Toán THCS năm 2022 2023 phòng GD ĐT Cát Tiên Lâm Đồng Bản PDF - Nội dung bài viết Chào quý thầy cô giáo và các em học sinh lớp 9! Chào quý thầy cô giáo và các em học sinh lớp 9! Đề thi chọn học sinh giỏi cấp huyện môn Toán THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cát Tiên, tỉnh Lâm Đồng đã được công bố. Hãy cùng Sytu tìm hiểu về các bài toán và phần kiến thức trong đề thi này. Bài toán đầu tiên đề cập đến việc đi xe đạp là một hình thức tập thể dục tốt cho sức khỏe và môi trường. Bạn Nam dự định đi từ nhà đến Sân Vận Động và trở lại. Tuy nhiên, do dừng lại nghỉ 3 phút ở sân, Nam phải tăng tốc độ lên 2km/h để kịp về nhà đúng giờ. Hãy tính vận tốc dự định của Nam khi biết quãng đường đi và về đều là 3km. Bài toán thứ hai liên quan đến tam giác cân và đường cao. Chứng minh rằng đoạn thẳng CI bằng tổng độ dài đoạn DH và DK trong tam giác ABC cân tại A. Bài toán cuối cùng đề cập đến hình chữ nhật ABCD và những đường vuông góc trong hình. Chứng minh rằng ba điểm K, E, F thẳng hàng khi biết E, F là trung điểm của hai cạnh AH và CD, và K là điểm cắt của đường vuông góc với BE tại E trên AB. Hy vọng những phân tích chi tiết và cụ thể trên sẽ giúp các em chuẩn bị tốt cho kỳ thi học sinh giỏi Toán THCS sắp tới. Chúc các em học tốt và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 9 lần 1 năm 2022 - 2023 trường THCS Nguyễn Hồng Lễ - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội dự tuyển học sinh giỏi cấp tỉnh môn Toán 9 lần 1 năm học 2022 – 2023 trường THCS Nguyễn Hồng Lễ, thành phố Sầm Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2022.
Đề học sinh giỏi cấp huyện Toán 9 năm 2022 - 2023 phòng GDĐT Ba Vì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Nha Trang - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Nha Trang, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Nha Trang – Khánh Hòa : + Chứng minh rằng nếu n + 1 và 2n + 1 (n thuộc N) đều là số chính phương thì n chia hết cho 24. + Hai đội bóng bàn A và B của hai trường trung học cơ sở thi đấu giao hữu. Biết rằng mỗi đấu thủ của đội A phải lần lượt gặp đấu thủ của đội B một lần và số trận đấu gấp đôi tổng số đấu thủ của hai đội. Tính số đấu thủ của mỗi đội. + Giả sử mỗi điểm trong mặt phẳng được tô bằng một trong hai màu trắng hoặc đen. Chứng minh tồn tại một hình chữ nhật có đỉnh cùng màu.
Đề học sinh giỏi huyện môn Toán năm 2022 - 2023 phòng GDĐT Cam Lâm - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cam Lâm, tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 17 tháng 09 năm 2022. Trích dẫn đề học sinh giỏi huyện môn Toán năm 2022 – 2023 phòng GD&ĐT Cam Lâm – Khánh Hòa : + Một lớp học của trường X có 40 học sinh, trong đó có 30 học sinh thích môn Toán và 20 học sinh thích môn Văn. Hỏi : 1) Có nhiều nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 2) Có ít nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 3) Nếu chỉ có 3 học sinh không thích cả môn Văn lẫn môn Toán thì có bao nhiêu học sinh thích cả hai môn Văn lẫn Toán? + Cho tam giác ABC vuông tại A. Từ điểm D trên cạnh huyền BC kẻ DE vuông góc với AB, DF vuông góc với AC. 1) Chứng minh tứ giác AEDF là hình chữ nhật. 2) Chứng minh EA.EB + FA.FC = DB.DC. 3) Giả sử AB = 6cm, AC = 8cm. Xác định vị trí của điểm D để diện tích tứ giác AEDF là lớn nhất. + Năm vận động viên mang số áo là 1; 2; 3; 4; 5 được chia thành hai nhóm. Chứng tỏ rằng ở một trong hai nhóm ta luôn có hai vận động viên mà hiệu các số áo họ mang trùng với một trong các số áo mà người của nhóm đó mang.