Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm định lớp 12 môn Toán lần 2 năm 2018 2019 trường THPT Yên Phong 2 Bắc Ninh

Nội dung Đề kiểm định lớp 12 môn Toán lần 2 năm 2018 2019 trường THPT Yên Phong 2 Bắc Ninh Bản PDF Thứ Tư ngày 20 tháng 03 năm 2019, thầy và trò trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm chất lượng lần thứ hai môn Toán lớp 12 năm học 2018 – 2019, kỳ thi nhằm đánh giá tổng quát chất lượng môn Toán của học sinh khối 12 trước khi các em bước vào kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019. Đề kiểm định Toán lớp 12 lần 2 năm 2018 – 2019 trường THPT Yên Phong 2 – Bắc Ninh có mã đề 121 gồm 05 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài thi Toán trong 90 phút, nội dung đề tập trung chủ yếu vào chương trình Toán lớp 12, ngoài ra có một số ít các bài toán về xác suất, dãy số … trong chương trình Toán lớp 11, đề thi có đáp án. [ads] Trích dẫn đề kiểm định Toán lớp 12 lần 2 năm 2018 – 2019 trường THPT Yên Phong 2 – Bắc Ninh : + Khẳng định nào sau đây đúng? A. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. B. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. C. Hai mặt phẳng song song khi và chỉ khi góc giữa chúng bằng 0 độ. D. Hai đường thẳng trong không gian cắt nhau khi và chỉ khi góc giữa chúng lớn hơn 0 độ và nhỏ hơn 90 độ. + Trong không gian, cho hình chữ nhật ABCD có AB = 1 và AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN, ta được một hình trụ. Tính diện tích toàn phần Stp của hình trụ đó. + Gọi S là tập tất cả các giá trị của x ∈ [0;100] để ba số sinx, (cosx)^2, sin3x theo thứ tự đó lập thành cấp số cộng. Tính tổng tất cả các phần tử của tập S.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng lần 2 Toán 12 năm 2021 - 2022 sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng lần 2 môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Hải Dương; kỳ thi được diễn ra vào lúc 19h15 ngày 18 tháng 04 năm 2022 theo hình thức thi trực tuyến (thi online trên máy tính / điện thoại). Trích dẫn đề khảo sát chất lượng lần 2 Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Dương : + Cho đồ thị hai hàm số y = f(x) và y = g(x) như hình vẽ bên dưới. Biết đồ thị của hàm số y = f(x) là một Parabol đỉnh I có tung độ bằng -1/2 và y = g(x) là một hàm số bậc ba. Hoành độ giao điểm của hai đồ thị là x1, x2, x3 thỏa mãn x1.x2.x3 = -6. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x) và y = g(x) gần nhất với giá trị nào dưới đây? + Từ một miếng tôn hình tròn bán kính 2m, người ta cắt ra một hình chữ nhật rồi uốn thành mặt xung quanh của một chiếc thùng phi hình trụ như hình vẽ bên dưới. Để thể tích thùng lớn nhất thì diện tích phần tôn bị cắt bỏ gần nhất với giá trị nào sau đây? + Cho lăng trụ ABC.A’B’C’ có thể tích là V. M N P là các điểm lần lượt nằm trên các cạnh AM 1 BN AA’ 3′ BB’ СР AA’ BB’ CC’ sao cho x y. Biết thể tích khối đa diện ABC.MNP CC 2V bằng? Giá trị lớn nhất của x.y bằng?
Đề khảo sát chất lượng Toán 12 năm 2021 - 2022 sở GDĐT Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh lớp 12 THPT môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND thành phố Hà Nội; kỳ thi được diễn ra vào chiều thứ Sáu ngày 22 tháng 04 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2021 – 2022 sở GD&ĐT Hà Nội : + Cắt một khối trụ có chiều cao 5 dm bởi một mặt phẳng vuông góc với trục thì được hai khối trụ mới có tổng diện tích toàn phần nhiều hơn diện tích toàn phần của khối trụ ban đầu là 187 dm². Tổng diện tích toàn phần của hai khối trụ mới bằng? + Một phòng thi có 24 thí sinh trong đó có 18 thí sinh nam, 6 thí sinh nữ. Cán bộ coi thi chọn ngẫu nhiên 2 thí sinh chứng kiến niêm phong bì đề thi. Xác suất để chọn được 1 thí sinh nam và 1 thí sinh nữ bằng? + Trong không gian Oxyz, cho điểm M(1;2;3). Đường thẳng d đi qua điểm M, d cắt tia Ox tại A và cắt mặt phẳng (Oyz) tại B sao cho MA = 2MB. Độ dài đoạn thẳng AB bằng?
Đề khảo sát chất lượng Toán 12 năm 2021 - 2022 sở GDĐT Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bắc Ninh; kỳ thi nhằm kiểm tra kiến thức thường xuyên để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2021 – 2022 sở GD&ĐT Bắc Ninh : + Cho hàm số f(x) xác định, liên tục và có đạo hàm trên khoảng (a;b). Xét các mệnh đề sau: (1) Nếu f(x) đồng biến trên (a;b) thì hàm số không có cực trị trên (a;b). (2) Nếu f(x) nghịch biến trên (a;b) thì hàm số không có cực trị trên (a;b). (3) Nếu f(x) đạt cực trị tại điểm x0 thuộc (a;b) thì tiếp tuyến của đồ thị hàm số tại điểm M (x0;f(x0)) song song hoặc trùng với trục hoành. (4) Nếu f(x) đạt cực đại tại x0 thuộc (a;b) thì f(x) đồng biến trên (a;x0) và nghịch biến trên (x0;b). Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng? + Trong không gian Oxyz, cho hai điểm A (3;1;1), B(3;-2;-2). Điểm M thuộc mặt phẳng (Oxz) sao cho các đường thẳng MA, MB luôn tạo với mặt phẳng (Oxz) các góc bằng nhau. Biết rằng điểm M luôn thuộc đường tròn (C) cố định. Bán kính R của đường tròn (C) là? + Cho khối chóp S.ABC có SA = SB = SC = a; ASB = 60°; BSC = 90°; CSA = 120°. Gọi M, N lần lượt là các điểm trên cạnh AB và SC sao cho. Khi khoảng cách giữa M và N nhỏ nhất, thể tích của khối chóp S.AMN bằng?
Đề khảo sát chất lượng Toán 12 THPT năm 2021 - 2022 sở GDĐT Phú Thọ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 132); kỳ thi được diễn ra vào thứ Sáu ngày 08 tháng 04 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Cho hàm bậc bốn y f x có đạo hàm liên tục trên hàm số y f x có đồ thị như hình vẽ. Gọi S là tập các giá trị nguyên của tham số m để hàm số y f x m 4 2 6 có đúng 3 điểm cực tiểu. Tổng các phần tử của S bằng? + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z 2 5 24 cắt mặt phẳng 4 0 x y theo giao tuyến là đường tròn C. Điểm M thuộc C sao cho khoảng cách từ M đến A 4 12 1 nhỏ nhất có tung độ bằng? + Cho hình nón có chiều cao bằng 2 a. Cắt bởi một mặt phẳng đi qua đỉnh và cách tâm của đáy một khoảng bằng a ta được thiết diện có diện tích bằng 2 4 11 3 a. Thể tích của khối nón đã cho bằng?