Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình bậc hai, hệ thức Vi-ét và ứng dụng Dương Minh Hùng

Nội dung Phương trình bậc hai, hệ thức Vi-ét và ứng dụng Dương Minh Hùng Bản PDF - Nội dung bài viết Phương trình bậc hai, hệ thức Vi-ét và ứng dụng Dương Minh Hùng Phương trình bậc hai, hệ thức Vi-ét và ứng dụng Dương Minh Hùng Tài liệu "Phương trình bậc hai, hệ thức Vi-ét và ứng dụng" được biên soạn bởi thầy giáo Dương Minh Hùng và bao gồm 26 trang. Trong tài liệu này, thầy giáo Hùng phân dạng và hướng dẫn giải các dạng toán liên quan đến phương trình bậc hai, hệ thức Vi-ét và các ứng dụng của chúng. Đây là tài liệu rất hữu ích cho học sinh lớp 9 khi học chương trình Toán lớp 9 và ôn thi vào lớp 10 môn Toán. Trong tài liệu, các nội dung chính bao gồm: Tóm tắt lý thuyết: Công thức nghiệm của phương trình bậc hai. Công thức nghiệm thu gọn và dễ áp dụng. Định lí Vi-ét và cách áp dụng vào giải phương trình. Ứng dụng Vi-ét trong nhận biết phương trình đặc biệt. Các ứng dụng của Vi-ét trong giải toán chứa tham số. Phân dạng toán cơ bản: Dạng 1: Giải phương trình quy về bậc nhất. Dạng 2: Giải phương trình bậc hai theo công thức nghiệm. Dạng 3: Tính giá trị của biểu thức nghiệm bằng hệ thức Vi-ét. Dạng 4: Giải toán có tham số mà áp dụng định lí Vi-ét. Bài tập rèn luyện: Tài liệu cũng cung cấp các bài tập rèn luyện để học sinh tự rèn luyện và kiểm tra kiến thức của mình sau khi học lý thuyết. Cùng với sự hướng dẫn cụ thể và dễ hiểu từ thầy giáo Dương Minh Hùng, tài liệu này sẽ giúp học sinh nắm vững kiến thức về phương trình bậc hai, hệ thức Vi-ét và ứng dụng của chúng, từ đó có thể tự tin hơn trong việc làm bài tập và ôn thi. Mục tiêu cuối cùng là giúp học sinh đạt kết quả tốt trong môn Toán và phát triển khả năng tư duy logic.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề tính diện tích tam giác, diện tích tứ giác nhờ sử dụng các tỉ số lượng giác
Tài liệu gồm 14 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tính diện tích tam giác, diện tích tứ giác nhờ sử dụng các tỉ số lượng giác, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 4. A. KIẾN THỨC CẦN NHỚ Ta đã biết cách tính diện tích tam giác theo một công thức rất quen thuộc là S = 1/2ah, trong đó a là độ dài một cạnh của tam giác, h là chiều cao ứng với cạnh đó. Bây giờ ta vận dụng các tỉ số lượng giác, các hệ thức về cạnh và góc trong tam giác vuông để xây dựng thêm các công thức tính diện tích tam giác, tứ giác. B. BÀI TẬP MINH HỌA C. BÀI TẬP TỰ LUYỆN + Tính diện tích. + Chứng minh các hệ thức. + Tính số đo góc. + Tính độ dài. D. HƯỚNG DẪN GIẢI
Chuyên đề ứng dụng thực tế các tỉ số lượng giác của góc nhọn, thực hành ngoài trời
Tài liệu gồm 13 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề ứng dụng thực tế các tỉ số lượng giác của góc nhọn, thực hành ngoài trời, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 5. A. KIẾN THỨC CẦN NHỚ Vận dụng linh hoạt các tỉ số lượng giác của góc nhọn và kiến thức thực tiễn vào xử lý bài tập liên quan. B. BÀI TẬP MINH HỌA CƠ BẢN NÂNG CAO I. Bài tập củng cố kiến thức bản chất toán. II. Bài tập vận dụng vào thực tế.
Chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 4. A. KIẾN THỨC CẦN NHỚ I. Định lí Trong một tam giác vuông, mỗi cạnh góc vuông bằng: + Cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề. + Cạnh góc vuông kia nhân với tang góc đối hoặc nhân với côtang góc kề. Trong hình bên thì: $b = a\sin B = a\cos C$; $c = a\sin C = a\cos B$; $b = c\tan B = c\cot C$; $c = b\tan C = b\cot B.$ II. Giải tam giác vuông Là tìm tất cả các cạnh và góc của tam giác vuông B khi biết hai yếu tố của nó (trong đó ít nhất có một yếu tố về độ dài). B. MỘT SỐ DẠNG BÀI CƠ BẢN VÀ NÂNG CAO C. BÀI TẬP TỰ LUYỆN D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 30 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1. A. KIẾN THỨC CẦN NHỚ B. CÁC DẠNG BÀI TẬP CƠ BẢN VÀ NÂNG CAO Dạng 1 : Các bài toán tính toán. 1. Phương pháp giải. + Bước 1: Đặt độ dài cạnh, góc bằng ẩn. + Bước 2: Thông qua giả thiết và các hệ thức lượng lập phương trình chứa ẩn. + Bước 3: Giải phương trình, tìm ẩn số. Từ đó tính độ dài đoạn thẳng hoặc góc cần tìm. 2. Bài tập minh họa. Dạng 2 : Chứng minh đẳng thức, mệnh đề. 1. Phương pháp giải. Đưa mệnh đề về dạng đẳng thức, sử dụng hệ thức lượng và một số kiến thức đã học biến đổi các vế trong biểu thức, từ đó chứng minh các vế bằng nhau. 2. Bài tập minh họa. C. TRẮC NGHỆM RÈN LUYỆN PHẢN XẠ D. HƯỚNG DẪN GIẢI