Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 9 vòng 1 năm 2022 - 2023 trường THCS Nguyễn Tri Phương - TT Huế

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 1 năm học 2022 – 2023 trường THCS Nguyễn Tri Phương, tỉnh Thừa Thiên Huế. Trích dẫn Đề HSG Toán 9 vòng 1 năm 2022 – 2023 trường THCS Nguyễn Tri Phương – TT Huế : + Cho bốn số nguyên dương m, n, p, q thỏa điều kiện m3 = 2p3, n3 = 5q3. Chứng minh rằng tổng m + n + p + q là một hợp số. + Cho tam giác ABC có đường phân giác AD. Tính góc BAC biết AB = 4cm, AC = 5cm, BC = 6cm. Cho tam giác A’B’C’ có đường phân giác A’D’. Chứng minh rằng ABC đồng dạng A’B’C’. + Cho đoạn thẳng AB = 4cm, trên cùng một nửa mặt phẳng có bờ AB về hai tia Ax, By vuông góc với AB. Trên Ax lấy điểm D, trên By lấy điểm C sao cho BD vuông góc AC. Gọi E là giao điểm của BD và AC, F và H lần lượt là trung điểm của EB và EC. Biết 8FH = 9AD. Tính CD. Tính giá trị nhỏ nhất của AC + BD.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán THCS năm 2021 - 2022 phòng GDĐT thành phố Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THCS năm 2021 – 2022 phòng GD&ĐT thành phố Sơn La; kỳ thi được diễn ra vào ngày 07 tháng 01 năm 2022.
Đề thi HSG Toán THCS năm 2021 - 2022 phòng GDĐT huyện Thuận Châu - Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán THCS năm 2021 – 2022 phòng GD&ĐT huyện Thuận Châu – Sơn La.
Đề thi chọn HSG huyện Toán 9 năm 2021 - 2022 phòng GDĐT Sơn Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Sơn Hòa, tỉnh Phú Yên; kỳ thi được diễn ra vào thứ Ba ngày 04 tháng 01 năm 2022. Trích dẫn đề thi chọn HSG huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Sơn Hòa – Phú Yên : + Chứng minh rằng với mọi số tự nhiên n thì n2 + 12n + 2022 không thể là số chính phương. + Cho tam giác ABC vuông tại A, đường cao AH. a) Tính AH, BH biết BC = 50 cm và AB/AC = 3/4. b) Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng: AH3 = BC.BD.CE. c) Giả sử BC = 2a là độ dài cố định. Hỏi tam giác vuông ABC có thêm điều kiện gì để BD2 + CE2 đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất của BD2 + CE2. + Cho hai số dương a và b thỏa mãn. Tìm giá trị nhỏ nhất của biểu thức Q = 1/a + 1/b.
Đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 26 tháng 12 năm 2021.