Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 Toán 9 năm 2020 - 2021 trường THCS Đồng Khởi - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 Toán 9 năm học 2020 – 2021 trường THCS Đồng Khởi, thành phố Hồ Chí Minh. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2020 – 2021 trường THCS Đồng Khởi – TP HCM : + Cho parabol (P): y = 1 2 x 2 và đường thẳng (d): y = −x + 4 a) Vẽ (P) và (d) trên cùng mặt phẳng tọa độ. b) Tìm tọa độ giao điểm của (P) và (d) bằng phép toán. ĐS: (2; 2) và (−4; 8) c) Tìm tọa độ điểm N thuộc (P) (N khác gốc tọa độ) có tung độ gấp ba lần hoành độ. ĐS: N (6; 18). + Để tặng thưởng cho các học sinh đạt thành tích cao trong kì thi học sinh giỏi cấp thành phố. Trường THCS Đồng Khởi đã trao 32 phần thưởng cho các học sinh với tổng giải thưởng là 31300000 đồng, bao gồm mỗi học sinh đạt nhất được thưởng 1500000 đồng; mỗi học sinh đạt giải nhì được thưởng 1000000 đồng; mỗi học sinh đạt giải ba được thưởng 700000 đồng; mỗi học sinh đạt giải khuyến khích được thưởng 300000 đồng (học sinh đạt giải khuyến khích là những em chỉ chỉ đạt học sinh giỏi vòng 2 cấp quận nhưng không đạt học sinh giỏi cấp thành phố). Biết rằng có 8 giải ba và 4 giải khuyến khích được trao. Hỏi có bao nhiêu giải nhất và giải nhì được trao? + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Ba đường cao AK, BM, CN cắt nhau tại H. a) Chứng minh các tứ giác AMHN và BCMN nội tiếp. b) Kẻ đường kính AD của đường tròn (O). AD cắt MN tại I. Chứng minh AB · AC = AD · AK và AD ⊥ MN. c) Tia MN cắt BC tại E; AD cắt BC tại F. Chứng minh AI · AF + KE · KF = AK2.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 2 Toán 9 năm 2021 - 2022 trường Tạ Quang Bửu - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng giữa học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS và THPT Tạ Quang Bửu, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 10 tháng 03 năm 2022. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2021 – 2022 trường Tạ Quang Bửu – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Một cửa hàng có tổng cộng 28 chiếc tivi và tủ lạnh. Giá mỗi cái tủ lạnh là 15 triệu đồng, mỗi cái tivi là 30 triệu đồng. Nếu bán hết 28 cái tivi và tủ lạnh này chủ cửa hàng sẽ thu được 720 triệu đồng. Hỏi cửa hàng có bao nhiêu cái tivi và tủ lạnh? + Cho nửa đường tròn (O), đường kính AB. Lấy hai điểm C, M bất kỳ thuộc nửa đường tròn sao cho AC = CM (AC và CM khác MB). Gọi D là giao điểm của AC và BM; H là giao điểm của AM và BC. 1. Chứng minh: Tứ giác CHMD nội tiếp. 2. Chứng minh: DA.DC = DB.DM. 3. Tiếp tuyến tại A của đường tròn (O) cắt tia BC tại K. Chứng minh rằng: KD. Gọi Q là giao điểm của DH và AB. Chứng minh rằng: khi điểm C di chuyển trên nửa đường tròn sao cho AC = CM thì đường tròn ngoại tiếp CMQ luôn đi qua một điểm cố định. + Chọn đáp án đúng trong mỗi câu sau (học sinh ghi vào giấy thi phương án lựa chọn. Ví dụ: câu 1 chọn đáp án A, ghi là: 1A).