Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 8 - Nguyễn Chín Em

Trong giai đoạn học sinh lớp 8 buộc phải nghỉ học kéo dài do diễn biến phức tạp của dịch bệnh Covid-19, thì việc tự học tập tại nhà là điều rất cần thiết, để đảm bảo mạch kiến thức không bị gián đoạn. Để hỗ trợ các em trong quá trình tự học môn Toán lớp 8 tại nhà, THCS. chia sẻ đến các em tài liệu tự học Toán 8 do thầy giáo Th.s Nguyễn Chín Em sưu tầm và biên soạn; tài liệu gồm có 483 trang, bao gồm đầy đủ kiến thức, phân dạng toán và hướng dẫn giải bài tập Đại số 8 và Hình học 8. Khái quát nội dung tài liệu tự học Toán 8 – Nguyễn Chín Em: PHẦN I . ĐẠI SỐ. CHƯƠNG 1 . PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC. 1 Nhân đa thức. 2 Các hằng đẳng thức đáng nhớ. 3 Phân tích đa thức thành nhân tử. 4 Chia đa thức. CHƯƠNG 2 . PHÂN THỨC ĐẠI SỐ. 1 Tính chất cơ bản của phân thức, rút gọn phân thức. 2 Các phép tính về phân thức. 3 Một số phương pháp phân tích đa thức thành nhân tử. + Phương pháp tách một hạng tử thành nhiều hạng tử. + Phương pháp thêm và bớt cùng một hạng tử. + Phương pháp hệ số bất định. + Phương pháp xét giá trị riêng. 4 Tính chia hết của số nguyên. + Chứng minh quan hệ chia hết. + Tìm số dư. + Tìm điều kiện để chia hết. 5 Tính chia hết đối với đa thức. + Tìm dư của phép chia mà không thực hiện phép chia. + Sơ đồ Hoóc-ne. + Chứng minh một đa thức chia hết cho một đa thức khác. CHƯƠNG 3 . PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. 1 Khái niệm về phương trình. Phương trình bậc nhất. 2 Phương trình tích. 3 Phương trình chứa ẩn ở mẫu thức. 4 Giải bài toán bằng cách lập phương trình. CHƯƠNG 4 . BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. 1 Liên hệ giữa thứ tự và phép cộng, phép nhân. 2 Bất phương trình bậc nhất một ẩn. 3 Phương trình chứa ẩn trong dấu giá trị tuyệt đối. 4 Bất phương trình chứa ẩn trong dấu trị tuyệt đối. 5 Bất phương trình tích. Bất phương trình thương. 6 Chuyên đề chứng minh bất đẳng thức180 + Các tính chất của bất đẳng thức. + Các hằng bất đẳng thức. + Các phương pháp chứng minh bất đẳng thức. + Bất đẳng thức với số tự nhiên. + Vài điểm chú ý khi chứng minh bất đẳng thức. + Áp dụng chứng minh bất đẳng thức vào giải phương trình. 7 Tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa một biến. + Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức có quan hệ ràng buộc giữa các biến. + Các chú ý khi tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Bài toán cực trị với số tự nhiên. [ads] PHẦN II . HÌNH HỌC. CHƯƠNG 1 . TỨ GIÁC. 1 Tứ giác. 2 Hình thang. 3 Dựng hình bằng thước và compa. 4 Đối xứng trục. 5 Hình bình hành. 6 Đối xứng tâm. 7 Hình chữ nhật. 8 Hình thoi. 9 Hình vuông. CHƯƠNG 2 . ĐA GIÁC. DIỆN TÍCH ĐA GIÁC. 1 Đa giác. 2 Diện tích của đa giác. CHƯƠNG 3 . CHUYÊN ĐỀ. 1 Tìm tập hợp điểm. + Hai tập hợp bằng nhau. + Các tập hợp điểm đã học. + Thứ tự nghiên cứu và trình bày lời giải bài toán tìm tập hợp điểm. + Phân chia các trường hợp trong bài toán tìm tập hợp điểm. 2 Sử dụng công thức diện tích để thiết lập quan hệ về độ dài của các đoạn thẳng. CHƯƠNG 4 . TAM GIÁC ĐỒNG DẠNG. 1 Định lý Ta-lét. 2 Định lý Ta-lét đảo. 3 Tính chất đường phân giác của tam giác. 4 Các trường hợp đồng dạng của tam giác. + Dạng 1. Trường hợp cạnh – cạnh – cạnh. + Dạng 2. Trường hợp cạnh – góc – cạnh. + Dạng 3. Trường hợp góc – góc. + Dạng 4. Phối hợp các trường hợp cạnh – góc – cạnh và góc – góc. + Dạng 5. Dựng hình. 5 Các trường hợp đồng dạng của tam giác vuông. + Hai tam giác vuông đồng dạng. + Tỉ số các đường cao, tỉ số diện tích của hai tam giác đồng dạng. + Ứng dụng thực tế của tam giác đồng dạng. CHƯƠNG 5 . HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU. 1 Hình hộp chữ nhật. Dạng 1. Hình hộp chữ nhật. Dạng 2. Diện tích. Dạng 3. Thể tích. Dạng 4. Các dạng khác. CHƯƠNG 6 . ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONGKHÔNG GIAN. QUAN HỆ SONG SONG. 1 Hình lăng trụ đứng. 2 Hình chóp đều. Hình chóp cụt đều. 3 Toán cực trị hình học. + Bài toán cực trị. + Các bất đẳng thức thường dùng để giải toán cực trị. + Các chú ý khi giải toán cực trị.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn
Tài liệu gồm 43 trang, tóm tắt lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 2) phần Đại số chương 3. Bài 1. Mở đầu về phương trình. Bài 2. Phương trình bậc nhất một ẩn và cách giải. + Dạng 1. Xét xem x = a có là nghiệm của phương trình không? + Dạng 2. Xét hai phương trình có tương đương nhau không? + Dạng 3. Nhận dạng phương trình bậc nhất một ẩn số. + Dạng 4. Giải phương trình bậc nhất. Bài 3. Phương trình đưa được về dạng ax + b = 0. + Dạng 1. Tìm chỗ sai và sửa lại các bài giảng phương trình. + Dạng 2. Giải phương trình. + Dạng 3. Giải bài toán bằng cách lập phương trình. Bài 4. Phương trình tích. + Dạng 1. Phương trình dạng a(x).b(x) = 0. + Dạng 2. Phương trình đưa về dạng phương trình tích. Bài 5. Phương trình chứa ẩn ở mẫu. + Dạng 1. Tìm chỗ sai và sửa lại các bài giải phương trình. + Dạng 2. Giải phương trình có chứa ẩn ở mẫu. + Dạng 3. Xác định giá trị của a để biểu thức có giá trị bằng hằng số k cho trước. Bài 6 – Bài 7. Giải bài toán bằng cách lập phương trình. + Dạng 1. Toán về tỉ số và quan hệ giữa các số. + Dạng 2. Toán chuyển động. + Dạng 3. Toán về công việc. + Dạng 4. Toán làm chung công việc. Ôn tập chương III. A. Bài tập ôn trong SGK. B. Bài tập ôn bổ sung.
Lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác
Tài liệu gồm 33 trang, tóm tắt lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Hình học chương 2. Bài 1. Đa giác và đa giác đều. + Dạng 1. Nhận biết đa giác. + Dạng 2. Tính chất về góc của đa giác. + Dạng 3. Tính chất về số đường chéo của đa giác. + Dạng 4. Đa giác đều. Bài 2. Diện tích hình chữ nhật. + Dạng 1. Tính chất diện tích đa giác. + Dạng 2. Tính diện tích hình chữ nhật. + Dạng 3. Diện tích hình vuông. + Dạng 4. Diện tích tam giác vuông. Bài 3. Diện tích tam giác. + Dạng 1. Cắt và ghép hình. Giải thích công thức tính diện tích tam giác. + Dạng 2. Tính toán, chứng minh về diện tích tam giác. + Dạng 3. Tính độ dài đoạn thẳng bằng cách sử dụng công thức tính diện tích tam giác. + Dạng 4. Sử dụng công thức diện tích để chứng minh các hệ thức. + Dạng 5. Tìm vị trí của điểm để thỏa mãn một đẳng thức về diện tích. + Dạng 6. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Bài 4. Diện tích hình thang. + Dạng 1. Tính diện tích hình thang. + Dạng 2. Tính diện tích hình bình hành. + Dạng 3. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Bài 5. Diện tích hình thoi. + Dạng 1. Tính diện tích tứ giác có hai đường chéo vuông góc. + Dạng 2. Tính diện tích hình thoi. + Dạng 3. Tìm diện tích lớn nhất(nhỏ nhất) của một hình. Bài 6. Diện tích đa giác. + Dạng 1. Tính diện tích đa giác. + Dạng 2. Dựng tam giác có diện tích bằng diện tích của một đa giác.
Lý thuyết, các dạng toán và bài tập tứ giác
Tài liệu gồm 55 trang, tóm tắt lý thuyết, các dạng toán và bài tập tứ giác, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Hình học chương 1. Bài 1. Tứ giác. + Dạng 1. Tính góc của tứ giác. + Dạng 2. Vẽ tứ giác. + Dạng 3. Tính độ dài. Hệ thức giữa các độ dài. Bài 2. Hình thang. + Dạng 1. Tính góc của hình thang. + Dạng 2. Nhận biết hình thang, hình thang vuông. + Dạng 3. Tính toán và chứng minh về độ dài. Bài 3. Hình thang cân. + Dạng 1. Nhận biết hình thang cân. + Dạng 2. Sử dụng tính chất hình thang cân để tính số đo góc, độ dài đường thẳng. Bài 4. Đường trung bình của tam giác, của hình thang. + Dạng 1. Sử dụng đường trung bình của tam giác để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 2. Sử dụng đường trung bình của tam giác để chứng minh hai đường thẳng song song, chứng minh ba điểm thẳng hàng, tính góc. + Dạng 3. Sử dụng đường trung bình của hình thang để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 4. Sử dụng đường trung bình của hình thang để chứng minh hai đường thẳng song song, chứng minh ba đlểm thẳng hàng, tính góc. Bài 5. Dựng hình bằng thước và compa. Dựng hình thang. + Dạng 1. Dựng tam giác. + Dạng 2. Dựng hình thang. + Dạng 3. Dựng góc có số đo đặc biệt. + Dạng 4. Dựng tứ giác, dựng điểm hay đường thẳng thoả mãn một yêu cầu nào đó. Bài 6. Đối xứng trục. + Dạng 1. Vẽ hình, nhận biết hai hình đối xứng với nhau qua một trục. + Dạng 2. Sử dụng đối xứng trục để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm trục đối xứng của một hình, hình có trục đối xứng. + Dạng 4. Dựng hình, thực hành có sử dụng đối xứng trục. Bài 7. Hình bình hành. + Dạng 1. Nhận biết hình bình hành. + Dạng 2. Sử dụng tính chất của hình bình hành để chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau. + Dạng 3. Sử dụng tính chất đường chéo hình bình hành để chứng minh ba điểm thẳng hàng, chứng minh ba đường thẳng đồng quy. + Dạng 4. Dựng hình bình hành, hoặc dựng hình có liên quan đến hình bình hành. Bài 8. Đối xứng tâm. + Dạng 1. Vẽ hình đối xứng qua một tâm. + Dạng 2. Nhận biết hai điểm đối xứng với nhau qua một tâm. Sử dụng đối xứng tâm để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm tâm đối xứng của một hình, tìm hình có tâm đối xứng. + Dạng 4. Dựng hình có sử dụng đối xứng tâm. Bài 9. Hình chữ nhật. + Dạng 1. Nhận biết hình chữ nhật. + Dạng 2. Sử dụng tính chất hình chữ nhật để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tính chất đối xứng của hình chữ nhật. + Dạng 4. Áp dụng vào tam giác. + Dạng 5. Dựng hình chữ nhật. Bài 10. Đường thẳng song song với một đường thẳng cho trước. + Dạng 1. Đường thẳng song song cách đều. + Dạng 2. Chứng tỏ một điểm chuyển động trên một đường thẳng song song với một đường thẳng cho trước. + Dạng 3. Phát biểu một tập hợp điểm. Bài 11. Hình thoi. + Dạng 1. Nhận biết hình thoi. + Dạng 2. Sử dụng tính chất hình thoi để tính toán, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, các đường thẳng vuông góc. + Dạng 3. Tính chất đối xứng của hình thoi. + Dạng 4. Dựng hình thoi. Bài 12. Hình vuông. + Dạng 1. Nhận biết hình vuông. + Dạng 2. Sử dụng tính chất hình vuông để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tìm điều kiện để một hình trở thành hình vuông. + Dạng 4. Dựng hình vuông, cắt hình vuông. Ôn tập chương I.
Lý thuyết, các dạng toán và bài tập phân thức đại số
Tài liệu gồm 42 trang, tóm tắt lý thuyết, các dạng toán và bài tập phân thức đại số, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Đại số chương 2. Bài 1. Phân thức đại số. + Dạng 1. Chứng minh hai phân thức bằng nhau. + Dạng 2. Tìm giá trị nhỏ nhất (GTNN), giá trị lớn nhất (GTLN) của phân thức. Bài 2. Tính chất cơ bản của phân thức đại số. Bài 3. Rút gọn phân thức. + Dạng 1. Điền đa thức vào chỗ trống để có đẳng thức. + Dạng 2. Rút gọn phân thức. + Dạng 3. Chứng minh đẳng thức. + Dạng 4. Tính giá trị của biểu thức. + Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 6. Chứng minh biểu thức không phụ thuộc vào biến. + Dạng 7. Rút gọn biểu thức có điều kiện cho trước. Bài 4. Quy đồng mẫu thức của nhiều phân thức. + Dạng 1. Tìm mẫu thức chung của nhiều phân thức. + Dạng 2. Quy đồng mẫu thức. Bài 5. Phép cộng các phân thức đại số. Bài 6. Phép trừ các phân thức đại số. + Dạng 3. Rút gọn và tính giá trị của biểu thức. + Dạng 4. Chứng minh biểu thức không phụ thuộc vào biến. + Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 6. Áp dụng phân thức đại số vào bài toán chuyển động. + Dạng 7. Thực hiện phép tính để rút gọn phân thức. Bài 7. Phép nhân các phân thức đại số. Bài 8. Phép chia các phân thức đại số. Bài 9. Biến đổi các biểu thức hữu tỉ giá trị của phân thức. + Dạng 1. Rút gọn biểu thức. + Dạng 2. Điều kiện của x để giá trị phân thức xác định. + Dạng 3. Chứng minh biểu thức không phụ thuộc vào biến. Ôn tập chương III. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.