Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số chuyên đề toán tổ hợp bồi dưỡng học sinh giỏi THPT - Phạm Minh Phương

Cuốn sách gồm 180 trang, được biên soạn bởi tác giả Phạm Minh Phương (chủ biên), tuyển tập một số chuyên đề toán tổ hợp bồi dưỡng học sinh giỏi khối Trung học Phổ thông. CHUYÊN ĐỀ 1 . TẬP HỢP. 1.1 Các khái niệm cơ bản. 1.1.1 Khái niệm tập hợp. 1.1.2 Các cách xác định tập hợp. 1.1.3 Tập con. 1.1.4 Tập hợp bằng nhau. 1.1.5 Giao của hai tập hợp. 1.1.6 Hợp của hai tập hợp. 1.1.7 Hiệu của hai tập hợp. 1.1.8 Phần bù của hai tập hợp. 1.1.9 Tích Đề-các. 1.1.10 Một số tính chất. 1.2 Bài tập. 1.2.1 Bài tập luyện tập. 1.2.2 Bài tập tự giải. 1.3 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 2 . PHÉP ĐẾM. 2.1 Các nguyên lí cơ bản. 2.2 Tổ hợp – chỉnh hợp – hoán vị. 2.3 Bài tập. 2.3.1 Bài tập luyện tập. 2.3.2 Bài tập tự giải. 2.4 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 3 . NHỊ THỨC NEWTON. 3.1 Bài tập. 3.1.1 Bài tập luyện tập. 3.1.2 Bài tập tự giải. 3.2 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 4 . NGUYÊN TẮC DIRICHLET. 4.1 Nội dung nguyên tắc Dirichlet. 4.2 Bài tập. 4.2.1 Bài tập luyện tập. 4.2.2 Bài tập tự giải. 4.3 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 5 . NGUYÊN TẮC CỰC HẠN. 5.1 Nguyên tắc cực hạn. 5.2 Bài tập. 5.2.1 Bài tập luyện tập. 5.2.2 Bài tập tự giải. 5.3 Hướng dẫn giải bài tập [ads] CHUYÊN ĐỀ 6 . BẤT BIẾN. 6.1 Thuật toán. 6.1.1 Định nghĩa thuật toán. 6.1.2 Các bài toán về thuật toán. 6.1.3 Hàm bất biến. 6.2 Bài tập. 6.2.1 Bài tập luyện tập. 6.2.2 Bài tập tự giải. 6.3 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 7 . ĐƠN BIẾN VÀ BÀI TOÁN HỘI TỤ. 7.1 Hàm đơn biến. 7.2 Bài toán hội tụ và bài toán phân kì. 7.3 Bài tập. 7.3.1 Bài tập luyện tập. 7.3.2 Bài tập tự giải. 7.4 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 8 . MỘT SỐ PHƯƠNG PHÁP ĐẾM NÂNG CAO. 8.1 Phương pháp truy hồi. 8.2 Phương pháp sử dụng song ánh. 8.3 Phương pháp quỹ đạo. 8.4 Phương pháp sử dụng đa thức và số phức. 8.5 Bài tập. 8.5.1 Bài tập luyện tập. 8.5.2 Bài tập tự giải. 8.6 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 9 . HÀM SINH VÀ TỔ HỢP. 9.1 Khái niệm hàm sinh. 9.2 Khai triển Taylor. 9.3 Hệ số nhị thức mở rộng. 9.4 Ứng dụng của hàm sinh. 9.5 Bài tập. 9.5.1 Bài tập luyện tập. 9.5.2 Bài tập tự giải. 9.6 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 10 . HÌNH LỒI VÀ ĐỊNH LÍ HELLY. 10.1 Hình lồi. 10.2 Định lí Helly. 10.3 Bài tập. 10.3.1 Bài tập luyện tập. 10.3.2 Bài tập tự giải. 10.4 Hướng dẫn giải bài tập. Bài tập tổng hợp. Tài liệu tham khảo.

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề nhị thức Niu-tơn
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề nhị thức Niu-tơn, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. I. KIẾN THỨC TRỌNG TÂM 1) Công thức nhị thức Niu-tơn. 2. Một số kết quả quan trọng. 3) Chú ý. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1 . Tìm hệ số, số hạng trong khai triển không có điều kiện. + Bước 1: Viết khai triển dạng tổng quát. + Bước 2: Dựa vào giả thiết yêu cầu tìm hệ số của m x giải phương trình m f k k. + Bước 3: Thay vào biểu thức của T và kết luận. Dạng 2 . Tìm hệ số, số hạng trong khai triển có điều kiện. + Bước 1: Tìm n dựa vào điều kiện đề bài cho. + Bước 2: Quy về dạng 1 đã biết. Dạng 3 . Tìm hệ số, số hạng trong khai triển nhiều hạng tử. + Bước 1: Viết khai triển thu gọn về 2 hạng tử. + Bước 2: Dựa vào chỉ số mũ của x để biện luận tìm i và k. + Bước 3: Kết luận về hệ số của số hạng cần tìm.
Các dạng bài toán đếm
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề các dạng bài toán đếm, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. DẠNG 1 : BÀI TOÁN ĐẾM SỐ CÓ YẾU TỐ CHIA HẾT. Một số dấu hiệu chia hết cần lưu ý: + Số n chia hết cho 2 khi chữ số tận cùng của nó là 0, 2, 4, 6, 8. Ví dụ: 24; 508 …. + Số n chia hết cho 3 khi tổng các chữ số của nó chia hết cho 3. Ví dụ: 126; 540 …. + Số n chia hết cho 4 khi 2 chữ số tận cùng của nó phải chia hết cho 4. Ví dụ: 116; 544 …. + Số n chia hết cho 5 khi chữ số tận cùng của nó là 0 hoặc 5. Ví dụ: 80, 205 …. + Số n chia hết cho 6 khi nó đồng thời chia hết cho 2 và 3. + Số n chia hết cho 8 khi 3 chữ số cuối cùng của nó phải chia hết cho 8. + Số n chia hết cho 9 khi tổng các chữ số của nó chia hết cho 9. + Số n chia hết cho 10 khi chữ số tận cùng của nó là 0. + Số n chia hết cho 12 khi nó đồng thời chia hết cho 3 và 4. + Số n chia hết cho 15 khi nó đồng thời chia hết cho 3 và 5. + Số n chia hết cho 20 khi hai chữ số tận cùng của nó là 00; 20; 40; 60 và 80 + Số n chia hết cho 25 khi hai chữ số tận cùng của nó là 25; 50; 75; và 00. DẠNG 2 : BÀI TOÁN ĐẾM SỐ CÓ RÀNG BUỘC LỚN BÉ, SỐ LẦN XUẤT HIỆN CHỮ SỐ. DẠNG 3 : BÀI TOÁN CHỌN NGƯỜI VÀ ĐỒ VẬT. DẠNG 4 : BÀI TOÁN ĐẾM CÓ YẾU TỐ HÌNH HỌC. Một số kết quả quan trọng cần lưu ý: 1. Với n điểm cho trước trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng được tạo ra là 2Cn, số véc tơ có điểm đầu và điểm cuối lấy từ n đỉnh là 2An. 2. Cho đa giác lồi n cạnh, số đường chéo của đa giác là 2 C n n. 3. Cho đa giác lồi n cạnh, xét các tam giác có 3 đỉnh là 3 đỉnh của đa giác, khi đó: Số tam giác có đúng 1 cạnh chung với đa giác là n n 4; Số tam giác có đúng 2 cạnh chung với đa giác là n; Số tam giác không có cạnh chung với đa giác là 3 4 C n n n n. 4. Cho đa giác đều có 2n cạnh, số các tam giác vuông có 3 đỉnh là các đỉnh của đa giác n n 2 2. 5. Cho đa giác đều có n cạnh, số tam giác nhọn được tạo thành từ 3 trong n đỉnh của đa giác là 3 Cn (số tam giác tù + số tam giác vuông). 6. Cho đa giác đều có n cạnh, số tam giác tù có 3 đỉnh là các đỉnh của đa giác được tính bởi công thức: Nếu n chẵn 2 2 2 n n C; Nếu n lẻ 2 1 2 n n C. 7. Cho đa giác lồi n cạnh, xét các tứ giác có 4 đỉnh là các đỉnh của đa giác, khi đó: Số tứ giác có đúng 1 cạnh chung với đa giác là 2 4 5 n n C n A; Số tứ giác có đúng 2 cạnh chung với đa giác là 5 5 2 n n n n B; Số tứ giác có đúng 3 cạnh chung với đa giác là n C; Số tứ giác không có cạnh chung với đa giác là 4 C A B C n. 8. Cho đa giác đều có 2n đỉnh. Số tứ giác có 4 đỉnh là 4 đỉnh của đa giác và tạo thành HÌNH CHỮ NHẬT là 2 Cn. 9. Cho đa giác đều có 4n đỉnh. Số tứ giác có 4 đỉnh là 4 đỉnh của đa giác và tạo thành HÌNH VUÔNG là n.
Tài liệu chủ đề hoán vị - chỉnh hợp - tổ hợp
Tài liệu gồm 32 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hoán vị – chỉnh hợp – tổ hợp, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. I. KIẾN THỨC TRỌNG TÂM 1) Hoán vị. + Hoán vị không lặp. + Hoán vị lặp. + Hoán vị vòng quanh. 2) Chỉnh hợp. + Chỉnh hợp không lặp. + Chỉnh hợp lặp. 3) Tổ hợp. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1. Hoán vị. Dạng 2. Chỉnh hợp. Dạng 3. Tổ hợp. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Tài liệu chủ đề quy tắc cộng và quy tắc nhân
Tài liệu gồm 23 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề quy tắc cộng và quy tắc nhân, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. I. KIẾN THỨC TRỌNG TÂM 1. Quy tắc cộng: Một công việc T được hoàn thành bởi cách thức khác nhau. – Cách thức 1 có m cách hoàn thành. – Cách thức 2 có n cách hoàn thành (không trùng lặp với cách nào ở trên). – Cách thức 3 có p cách hoàn thành (không trùng lặp với cách nào ở trên). … Khi đó để hoàn thành công việc T sẽ có m + n + p cách. Đây được gọi là Quy Tắc Cộng. 2. Quy tắc nhân: Một công việc T được hoàn thành bởi nhiều công đoạn liên tiếp. – Công đoạn 1 có m1 cách hoàn thành. – Công đoạn 2 có m2 cách hoàn thành. – Công đoạn 3 có m3 cách hoàn thành. … Khi đó để hoàn thành công việc T sẽ có 1 2 3 m m m cách. Đây được gọi là Quy Tắc Nhân. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.