Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KTCL Toán 10 lần 1 ôn thi THPTQG 2019 - 2020 trường Đội Cấn - Vĩnh Phúc

Tháng 11 năm 2019, trường THPT Đội Cấn, tỉnh Vĩnh Phúc tổ chức kỳ thi kiểm tra chất lượng môn Toán lần thứ nhất đối với học sinh khối lớp 10 năm học 2019 – 2020, kỳ thi nằm trong kế hoạch chuẩn bị lâu dài cho kỳ thi THPT Quốc gia môn Toán. Đề KTCL Toán 10 lần 1 ôn thi THPTQG 2019 – 2020 trường Đội Cấn – Vĩnh Phúc bao gồm 8 mã đề: 132, 209, 357, 485, 570, 628, 743, 896, đề gồm 5 trang với 50 câu trắc nghiệm, học sinh làm bài trong 90 phút, đề thi có đáp án đầy đủ các mã đề. Trích dẫn đề KTCL Toán 10 lần 1 ôn thi THPTQG 2019 – 2020 trường Đội Cấn – Vĩnh Phúc : + Chọn khẳng định đúng: A. Hai vec tơ cùng phương thì cùng hướng. B. Hai véc tơ cùng hướng thì cùng phương. C. Hai véc tơ cùng phương thì có giá song song nhau. D. Hai vec tơ cùng hướng thì có giá trùng nhau. + Lớp 10A trường THPT Đội Cấn, tỉnh Vĩnh Phúc có 15 em giỏi môn Toán,14 em học giỏi môn Lý, 12 em học giỏi môn Anh. Biết rằng có 8 em vừa giỏi Toán và Lý, 5 em vừa giỏi Lý và Anh, 7 em vừa giỏi Toán và Anh, trong đó có đúng 11 em giỏi 2 môn, 15 em không giỏi môn nào. Hỏi lớp có bao nhiêu học sinh? [ads] + Một gia đình sản xuất cà phê nguyên chất. Do điều kiện nhà xưởng nên mỗi đợt gia đình đó sản xuất được x kg cà phê (x ≤ 30). Nếu gia đình đó bán sỉ x kg thì giá mỗi kg được xác định bởi công thức G = 350 – 5x (nghìn đồng) và chi phí để sản xuất x kg cà phê được xác định bởi công thức C = x^2 + 50x + 1000 (nghìn đồng). Để đạt được lợi nhuận tối đa, mỗi đợt gia đình đó nên sản xuất bao nhiêu kg cà phê? + Cho ba lực F1 = MA, F2 = MB, F3 = MC cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của F1 bằng 30N, cường độ của F2 bằng 40N và hai lực F1, F2 có phương vuông góc với nhau. Khi đó cường độ lực của F3 là? + Cho tam giác ABC, gọi M là điểm thuộc cạnh AB, N là điểm thuộc cạnh AC sao cho 3AM = AB, 4AN = 3AC. Gọi O là giao điểm của CM và BN. Trên đường thẳng BC lấy E. Đặt BE = xBC. Tìm x để A, O, E thẳng hàng?

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL lớp 10 môn Toán lần 3 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc
Nội dung Đề thi KSCL lớp 10 môn Toán lần 3 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc Bản PDF Nhằm mục đích kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối lớp 10 trong giai đoạn học kỳ 2 năm học 2018 – 2019, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng Toán lớp 10 năm học 2018 – 2019 lần thứ 3. Đề thi KSCL Toán lớp 10 lần 3 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc có mã đề 132, đề gồm 50 câu hỏi và bài toán dạng trắc nghiệm – đúng theo xu hướng thi toán trắc nghiệm hiện hành, đề thi gồm 6 trang, thời gian học sinh làm bài là 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán lớp 10 lần 3 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Trong một cuộc thi pha chế, hai đội chơi A, B được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Hiệu số a – b là? [ads] + Trong mặt phẳng Oxy, cho tam giác ABC có trung điểm của BC là M(2; 2), đường cao kẻ từ B đi qua điểm N(-2;-4), đường thẳng AC đi qua K(0;2) và điểm E(3;-3) là điểm đối xứng của A qua tâm đường tròn ngoại tiếp tam giác ABC. Biết C(a;b) với b < 0. Khi đó ab bằng? + Người ta dùng 120m2 rào để rào một mảnh vườn hình chữ nhật để thả gia súc. Biết một cạnh của hình chữ nhật là bức tường (không phải rào). Tính diện tích lớn nhất của mảnh để có thể rào được? File WORD (dành cho quý thầy, cô):
Đề thi KSCL lớp 10 môn Toán lần 2 năm 2018 2019 trường Lý Thái Tổ Bắc Ninh
Nội dung Đề thi KSCL lớp 10 môn Toán lần 2 năm 2018 2019 trường Lý Thái Tổ Bắc Ninh Bản PDF Ngày 18 tháng 05 năm 2019, trường THPT Lý Thái Tổ, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 năm học 2018 – 2019 lần thứ 2. Đề thi KSCL Toán lớp 10 lần 2 năm 2018 – 2019 trường Lý Thái Tổ – Bắc Ninh được biên soạn theo dạng đề tự luận, đề gồm 1 trang với 6 bài toán, học sinh làm bài trong khoảng thời gian 120 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi KSCL Toán lớp 10 lần 2 năm 2018 – 2019 trường Lý Thái Tổ – Bắc Ninh : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(4;-3), B(2;5), C(5;4). 1) Viết phương trình tổng quát của đường thẳng BC. Tính diện tích tam giác ABC. 2) Viết phương trình đường tròn (T) ngoại tiếp tam giác ABC. 3) Tìm điểm M thuộc đường tròn (T) sao cho ME + 2MF đạt giá trị nhỏ nhất, với E(7;9), F(0;8). [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E) có tâm sai bằng √3/2, chu vi hình chữ nhật cơ sở bằng 12. Viết phương trình chính tắc của (E). Biết M là điểm di động trên (E), tính giá trị của biểu thức P = MF1^2 + MF2^2 – 5OM^2 – 3MF1MF2. + Cho tam giác nhọn ABC với H, E, K lần lượt là chân đường cao kẻ từ các đỉnh A, B, C. Gọi diện tích các tam giác ABC và HEK lần lượt là SABC và SHEK. Biết rằng SABC = 4SHEK, chứng minh tam giác ABC đều. File WORD (dành cho quý thầy, cô):
Đề thi khảo sát lần 3 lớp 10 môn Toán năm 2018 2019 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề thi khảo sát lần 3 lớp 10 môn Toán năm 2018 2019 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Đề thi khảo sát lần 3 Toán lớp 10 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh có mã đề 110 gồm 04 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Trích dẫn đề thi khảo sát lần 3 Toán lớp 10 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng Oxy, cho hình chữ nhật ABCD với AD = 2AB. Gọi M, N lần lượt là trung điểm của AD, BC. Điểm K(5;-1) đối xứng với M qua N. Phương trình đường thẳng chứa cạnh AC là: 2x + y – 3 = 0. Biết A(a;b) (b > 0). Tính tổng a + b. [ads] + Cho hai hàm số f(x) = |x + 2| – |x – 2|, g(x) = -|x|. Khẳng định nào sau đây đúng? A. f(x) là hàm số chẵn, g(x) là hàm số lẻ. B. f(x) là hàm số lẻ, g(x) là hàm số chẵn. C. f(x) là hàm số lẻ, g(x) là hàm số lẻ. D. f(x) là hàm số chẵn, g(x) là hàm số chẵn. + Cho hàm số f(x) = x^2 – 2(m + 1/m)x + m. Đặt a, b lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của f(x) trên đoạn [-1;1]. Gọi S là tập hợp tất cả các giá trị của tham số m sao cho: b – a = 8. Tính tổng của các phần tử thuộc S. File WORD (dành cho quý thầy, cô):