Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết cơ bản và bài tập về khối đa diện - Trần Sĩ Tùng

Tài liệu gồm 15 trang trình bày lý thuyết cơ bản và tuyển chọn các dạng toán khối đa diện, tài liệu do thầy Trùn Sĩ Tùng biên soạn. I. QUAN HỆ SONG SONG 1. Hai đường thẳng song song 2. Đường thẳng và mặt phẳng song song 3. Hai mặt phẳng song song 4. Chứng minh quan hệ song song a) Chứng minh 2 đường thẳng song song Có thể sử dụng 1 trong các cách sau: + Chứng minh 2 đường thẳng đó đồng phẳng, rồi áp dụng phương pháp chứng minh song song trong hình học phẳng (như tính chất đường trung bình, định lí Talét đảo …) + Chứng minh 2 đường thẳng đó cùng song song với đường thẳng thứ ba + Áp dụng các định lí về giao tuyến song song b) Chứng minh đường thẳng song song với mặt phẳng Để chứng minh d // (P), ta chứng minh d không nằm trong (P) và song song với một đường thẳng d’ nào đó nằm trong (P) c) Chứng minh hai mặt phẳng song song Chứng minh mặt phẳng này chứa hai đường thẳng cắt nhau lần lượt song song với hai đường thẳng trong mặt phẳng kia. II. QUAN HỆ VUÔNG GÓC 1. Hai đường thẳng vuông góc 2. Đường thẳng và mặt phẳng vuông góc 3. Hai mặt phẳng vuông góc 4. Chứng minh quan hệ vuông góc [ads] III. GÓC – KHOẢNG CÁCH 1. Góc 2. Khoảng cách a) Khoảng cách từ một điểm đến đường thẳng (mặt phẳng) bằng độ dài đoạn vuông góc vẽ từ điểm đó đến đường thẳng (mặt phẳng) b) Khoảng cách giữa đường thẳng và mặt phẳng song song bằng khoảng cách từ một điểm bất kì trên đường thẳng đến mặt phẳng c) Khoảng cách giữa hai mặt phẳng song song bằng khoảng cách từ một điểm bất kì trên mặt phẳng này đến mặt phẳng kia d) Khoảng cách giữa hai đường thẳng chéo nhau bằng: + Độ dài đoạn vuông góc chung của hai đường thẳng đó + Khoảng cách giữa một trong hai đường thẳng với mặt phẳng chứa đường thẳng kia và song song với đường thẳng thứ nhất + Khoảng cách giữa hai mặt phẳng, mà mỗi mặt phẳng chứa đường thẳng này và song song với đường thẳng kia IV. Nhắc lại một số công thức trong Hình học phẳng 1. Thể tích của khối hộp chữ nhật 2. Thể tích của khối chóp 3. Thể tích của khối lăng trụ 4. Một số phương pháp tính thể tích khối đa diện a) Tính thể tích bằng công thức + Tính các yếu tố cần thiết: độ dài cạnh, diện tích đáy, chiều cao … + Sử dụng công thức để tính thể tích b) Tính thể tích bằng cách chia nhỏ Ta chia khối đa diện thành nhiều khối đa diện nhỏ mà có thể dễ dàng tính được thể tích của chúng. Sau đó, cộng các kết quả ta được thể tích của khối đa diện cần tính c) Tính thể tích bằng cách bổ sung Ta có thể ghép thêm vào khối đa diện một khối đa diện khác sao cho khối đa diện thêm vào và khối đa diện mới tạo thành có thể dễ tính được thể tích d) Tính thể tích bằng công thức tỉ số thể tích

Nguồn: toanmath.com

Đọc Sách

Tổng ôn tập TN THPT 2020 môn Toán Thể tích khối đa diện
Tài liệu gồm 50 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề thể tích khối đa diện, có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Thể tích khối đa diện: 1. Công thức tính thể tích khối chóp. 2. Công thức tính thể tích khối lăng trụ. + Công thức tính thể tích khối lập phương. + Công thức tính thể tích khối hộp chữ nhật. 3. Xác định diện tích đáy. 4. Xác định chiều cao. + Hình chóp có một mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là chiều cao của tam giác chứa trong mặt bên vuông góc với đáy. + Hình chóp có hai mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là giao tuyến của hai mặt bên cùng vuông góc với mặt phẳng đáy. + Hình chóp có các cạnh bên bằng nhau: Chân đường cao của hình chóp là tâm đường tròn ngoại tiếp đa giác đáy.
Tổng ôn tập TN THPT 2020 môn Toán Góc và khoảng cách trong không gian
Tài liệu gồm 47 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề góc và khoảng cách trong không gian, có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Góc và khoảng cách trong không gian: CHỦ ĐỀ 1 . GÓC TRONG KHÔNG GIAN. Bài toán 1. Góc giữa đường thẳng a và đường thẳng b. + Phương pháp 1. Sử dụng song song. + Phương pháp 2. Sử dụng tích vô hướng. + Phương pháp 3. Ghép vào hệ trục tọa độ Oxyz. Bài toán 2. Góc giữa đường thẳng AB và mặt phẳng (P). + Phương pháp 1. Sử dụng kiến thức Hình học 11. + Phương pháp 2. Ghép vào hệ trục tọa độ Oxyz. [ads] Bài toán 3. Góc giữa mặt phẳng (P) và mặt phẳng (Q). + Phương pháp 1. Dựa vào định nghĩa. + Phương pháp 2. Tìm hai đường thẳng d1 và d2 lần lượt vuông góc với mặt phẳng (P) và mặt phẳng (Q). + Phương pháp 3. Sử dụng công thức hình chiếu. + Phương pháp 4. Sử dụng công thức sin a. + Phương pháp 5. Ghép vào hệ trục tọa độ Oxyz. CHỦ ĐỀ 2 . KHOẢNG CÁCH TRONG KHÔNG GIAN. Bài toán 1. Tính khoảng cách từ chân đường cao của hình chóp đến mặt bên của hình chóp. Bài toán 2. Tính khoảng cách giữa cạnh bên và cạnh thuộc mặt đáy.
Bài toán khoảng cách trong không gian - Nguyễn Tất Thu
Bài viết này sẽ trình bày cách tính khoảng cách từ một điểm đến mặt phẳng và khoảng cách giữa hai đường thẳng chéo nhau. Quy trình tính khoảng cách là chúng ta tìm cách chuyển về khoảng cách từ chân đường cao đến một mặt phẳng có giao tuyến với mặt đáy, hoặc khoảng cách từ một điểm nằm trong mặt phẳng đáy đến một mặt phẳng chứa đường cao của hình chóp. Với mô hình lăng trụ, ta chỉ cần tách phần cần tính để đưa về mô hình của hình chóp. Bài toán 1 . Khoảng cách từ một điểm đến mặt phẳng. Tính khoảng cách từ điểm M đến mặt phẳng (α). Để tính được khoảng từ điểm M đến mặt phẳng (α) ta có các cách sau: + Cách 1: Xác định hình chiếu vuông góc H của M lên (α). + Cách 2: Sử dụng công thức thể tích. + Cách 3: Chuyển việc tính khoảng cách từ M về tính khoảng cách từ điểm N dễ tính hơn. + Cách 4: Gắn hệ trục tọa độ Oxyz và sử dụng công thức khoảng cách từ điểm đến mặt phẳng. [ads] Bài toán 2 . Khoảng cách giữa hai đường thẳng chéo nhau. Cho hai đường thẳng chéo nhau a và b. Tính khoảng cách giữa a và b. Để tính khoảng cách giữa hai đường thẳng chéo nhau ta có thể dùng một trong các cách sau: + Cách 1: Dựng đoạn vuông góc chung MN của a và b. Khi đó d(a,b) = MN. + Cách 2: Dựng mặt phẳng (α) đi qua a và song song với b, khi đó: d(a,b) = d(a,(α)) = d(M,(α)) với M là điểm bất kì thuộc (α). + Cách 3: Dựng hai mặt phẳng (α) đi qua a và song song với b, (β) đi qua b và song song với a. Khi đó: d(a,b) = d((α),(β)). + Cách 4: Sử dụng phương pháp tọa độ.
Tóm tắt lý thuyết và bài tập trắc nghiệm khối đa diện và thể tích khối đa diện
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm khối đa diện và thể tích khối đa diện, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 1. Bên cạnh tài liệu khối đa diện và thể tích khối đa diện dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm khối đa diện và thể tích khối đa diện: A. KIẾN THỨC CƠ BẢN a. HÌNH HỌC PHẲNG. 1. Các hệ thức lượng trong tam giác vuông. 2. Các tỉ số lượng giác của góc nhọn trong tam giác vuông. 3. Các hệ thức lượng trong tam giác thường. 4. Định lý Thales. 5. Diện tích đa giác. b. CÁC PHƯƠNG PHÁP CHỨNG MINH HÌNH HỌC. 1. Chứng minh đường thẳng song song với mặt phẳng. 2. Chứng minh hai mặt phẳng song song. 3. Chứng minh hai đường thẳng song song. 4. Chứng minh đường thẳng vuông góc với mặt phẳng. 5. Chứng minh hai đường thẳng vuông góc. 6. Chứng minh hai mặt phẳng vuông góc. c. HÌNH CHÓP ĐỀU. 1. Định nghĩa hình chóp đều. 2. Hai hình chóp đều thường gặp. d. THỂ TÍCH KHỐI ĐA DIỆN. 1. Thể tích khối chóp. 2. Thể tích khối lăng trụ. 3. Thể tích hình hộp chữ nhật. 4. Tỉ số thể tích. 5. Hình chóp cụt. B. BÀI TẬP TRẮC NGHIỆM C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM