Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Đồng Tháp

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Đồng Tháp tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Đồng Tháp. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Đồng Tháp, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Đồng Tháp : + Chiều cao trung bình của 40 học sinh lớp 9A là 1,628 m. Trong đó chiều cao trung bình của học sinh nam là 1,64m và chiều cao trung bình của học sinh nữ là 1,61m. Tính số học sinh nam, số học sinh nữ của lớp 9A. [ads] + Người ta muốn tạo một cái khuôn đúc dạng hình trụ, có chiều cao bằng 16 cm, bán kính đáy bằng 8cm, mặt đáy trên lõm xuống dạng hình nón và khoảng cách từ đỉnh hình nón đến mặt đáy dưới hình trụ bằng 10cm (như hình vẽ bên). Tính diện tích toàn bộ mặt khuôn (lấy π = 3,14 ). + Trong hệ trục tọa độ Oxy, cho đường thẳng (x): y = 6x + b và parabol (P): y = ax^2 (a khác 0). a) Tìm giá trị của b để đường thẳng (d) đi qua điểm M(0;9). b) Với b tìm được, tìm giá trị cảu a để (d) tiếp xúc với (P).

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu; kỳ thi được diễn ra vào chiều thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GDKHCN Bạc Liêu : + Tìm tất cả các giá trị của tham số m để phương trình x2 – 5x + m – 2 = 0 có hai nghiệm dương phân biệt thoả mãn hệ thức. + Cho đường tròn tâm O có đường kính MN = 2R. Vẽ đường kính AB của đường tròn (O) (A khác M và A khác N). Tiếp tuyến của đường tròn (O) tại N cắt các đường thẳng MA, MB lần lượt tại các điểm I, K. a) Chứng minh tứ giác ABKI nội tiếp. b) Khi đường kính AB quay quanh tâm O thoả mãn điều kiện đề bài, xác định vị trí của đường kính AB để tứ giác ABKI có diện tích nhỏ nhất. + Cho nửa đường tròn (O) đường kính AB, điểm C thuộc nửa đường tròn (C khác A và B). Gọi I là điểm chính giữa cung AC, E là giao điểm của AI và BC. Gọi K là giao điểm của AC và BI. a) Chứng minh rằng EK vuông góc AB. b) Gọi F là điểm đối xứng với K qua I. Chứng minh AF là tiếp tuyến của (O). c) Nếu sin BAC = 6/3. Gọi H là giao điểm của EK và AB. Chứng minh KH(KH + 2HE) = 2HE.KE.
Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi tác giả Đặng Lê Gia Khánh). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT An Giang : + Cho phương trình bậc hai ẩn 𝑥, 𝑛 là tham số: 𝑛𝑥2 − 2(𝑛 + 1)𝑥 + 𝑛 = 0. a. Tìm 𝑛 để phương trình có hai nghiệm phân biệt 𝑥1; 𝑥2. b. Chứng minh rằng |𝑥1 − 𝑥2| ≤ 2√3 với mọi số 𝑛 nguyên dương. + Cho tam giác 𝐴𝐵𝐶 vuông tại 𝐶 (𝐴𝐶 > 𝐵𝐶), 𝐵𝐶 = 2. Biết rằng đường tròn (𝑂) qua ba điểm 𝐴, 𝐵, 𝑀 (𝑀 là trung điểm của 𝐵𝐶) cắt 𝐴𝐶 tại 𝐿 với 𝐵𝐿 là tia phân giác của góc 𝐴𝐵𝐶. a. Chứng minh 𝐶𝐴. 𝐶𝐿 = 2. b. Chứng minh 𝐴𝐵. 𝐿𝐶 = 𝐵𝐶. 𝐿𝑀. c. Tính độ dài cạnh 𝐴𝐵. + Một nông dân thu hoạch 100 trái dưa lưới có khối lượng trung bình là 1,5 kg. Trong 100 trái này có các trái dưa lưới nặng hơn 1,5 kg có khối lượng trung bình là 1,73 kg, các trái dưa lưới nhẹ hơn 1,5 kg có khối lượng trung bình là 1,33 kg và các trái dưa lưới nặng đúng 1,5 kg. a. Tìm biểu thức liên hệ giữa số trái dưa lưới theo khối lượng của chúng. b. Có ít nhất bao nhiêu trái dưa lưới nặng đúng 1,5 kg?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Cho tam giác nhọn ABC có AB AC và nội tiếp đường tròn (O). Gọi H là chân đường cao hạ từ đỉnh A của tam giác ABC và E là hình chiếu vuông góc của điểm B lên đường thẳng AO. 1. Chứng minh AEHB là tứ giác nội tiếp. 2. Chứng minh đường thẳng HE vuông góc với đường thẳng AC. 3. Gọi M là trung điểm của cạnh BC. Tính tỉ số ME MH. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y m x m 2 1 (m là tham số). Tìm m để đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 2. + Cho ba số thực dương x, y, z thay đổi thỏa mãn điều kiện xy yz zx xyz 3. Tìm giá trị nhỏ nhất của biểu thức 2 2 2 3 1 1 1 2 x y z Q xyz y z x.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Hà Nam : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2 và đường thẳng (d) có phương trình y = 2mx + 3 – 2m (với m là tham số). 1. Tìm m để đường thẳng (d) đi qua điểm A(2;1). 2. Chứng minh rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B. Gọi x1, x2 lần lượt là hoành độ các điểm A, B. Tìm m để x1, x2 là độ dài hai cạnh của một hình chữ nhật có độ dài đường chéo bằng 14. + Lớp 9A giao cho An đi mua bánh và kẹo để tổ chức liên hoan. An mua tất cả 15 hộp bánh và 5 túi kẹo với số tiền phải trả là 850 nghìn đồng. Biết rằng, giá mỗi hộp bánh là như nhau, giá mỗi túi kẹo là như nhau và giá một hộp bánh hơn giá một túi kẹo là 10 nghìn đồng. Tính giá tiền để mua một hộp bánh và giá tiền để mua một túi kẹo. + Cho đường tròn tâm O có đường kính AB = 2R. Gọi I là trung điểm của đoạn thẳng OA và E là điểm thuộc đường tròn tâm O (E không trùng với A và B). Gọi Ax và By là các tiếp tuyến tại A và B của đường tròn (O) (Ax và By cùng thuộc một nửa mặt phẳng bờ AB có chứa điểm E). Qua điểm E kẻ đường thẳng d vuông góc với E cắt Ax và By lần lượt tại M và N. 1. Chứng minh tứ giác AMEI nội tiếp. 2. Chứng minh ENI = EBI và AE.IN = BE.IM. 3. Gọi P là giao điểm của AE và MI, Q là giao điểm của BE và NI. Chứng minh hai đường thẳng PQ và BN vuông góc với nhau. 4. Gọi F là điểm chính giữa của cung AB không chứa điểm E của đường tròn (O). Tính diện tích tam giác AMN theo R khi ba điểm E, I, F thẳng hàng.