Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán)

Nội dung Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán) Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán) Vào ngày 03 tháng 06 năm 2019, sở Giáo dục và Đào tạo thành phố Hà Nội đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 Trung học Phổ thông cho năm học 2019 – 2020. Đây là kỳ thi dành cho các thí sinh mong muốn vào các lớp chuyên Toán. Đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 của sở GD&ĐT Hà Nội (chuyên Toán – Vòng 2) bao gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 5 bài toán. Thời gian cho học sinh làm bài là 150 phút. Trích dẫn một số câu hỏi từ đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 sở GD&ĐT Hà Nội (chuyên Toán): + Trong tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Điểm I là tâm của đường tròn nội tiếp tam giác ABC. Tia AI cắt đoạn thẳng BC tại điểm J, cắt đường tròn (O) tại điểm thứ hai M (M khác A). Chứng minh rằng MI^2 = MJ.MA. Kẻ đường kính MN của đường tròn (O). Đường thẳng MN cắt các tia phân giác trong của góc ABC và góc ACB lần lượt tại các điểm P và Q. Chứng minh N là trung điểm của đoạn thẳng PQ. Lấy điểm E bất kỳ thuộc cung nhỏ MC của đường tròn (O) (E khác M ). Gọi F là điểm đối xứng với điểm I qua điểm E. Gọi R là giao điểm của hai đường thẳng PC và QB. Chứng minh bốn điểm P, Q, R, F cùng thuộc một đường tròn. + Trên mặt phẳng với mỗi điểm được tô bởi một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại hai điểm được tô bởi cùng một màu và có khoảng cách bằng d. Điều này sẽ dẫn đến việc tồn tại hai tam giác vuông và đồng dạng với nhau theo tỉ số k = 1/2019. Đề Toán tuyển sinh năm học 2019 – 2020 của sở GD&ĐT Hà Nội đã tạo cơ hội cho các học sinh thể hiện năng lực và kiến thức toán học của mình. Hãy cùng chúng tôi chờ đón kết quả của các thí sinh trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Lai Châu bao gồm 5 bài toán tự luận với lời giải chi tiết. Đây là cơ hội cho học sinh thể hiện năng lực, kiến thức và kỹ năng giải toán một cách sâu sắc. Đề thi này giúp học sinh rèn luyện tư duy logic, khả năng phân tích và giải quyết vấn đề một cách chính xác và nhạy bén.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Quãng Ngãi
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Quãng Ngãi Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi bao gồm 5 bài toán tự luận, với lời giải chi tiết để học sinh có thể tự kiểm tra và ôn tập kiến thức một cách hiệu quả. Dưới đây là một số bài toán trong đề: + Cho hai điểm A, B phân biệt nằm trong góc nhọn xOy sao cho góc xOA = góc yOB. Gọi M, N lần lượt là hình chiếu vuông góc của A lên các tia Ox, Oy và P, Q lần lượt là hình chiếu vuông góc của B lên các tia Ox, Oy. Giả sử M, N, P, Q đôi một phân biệt. Chứng minh rằng bốn điểm M, N, P, Q cùng thuộc một đường tròn. + Cho tam giác AB không cân, có ba góc nhọn. Một đường tròn đi qua B, C cắt các cạnh AC, AB lần lượt tại D, E. Gọi M, N lần lượt là trung điểm của BD, CE. a. Chứng minh tam giác ABD, ACE đồng dạng với nhau và MAB = NAC. b. Gọi H là hình chiếu vuông góc của M lên AB, K là hình chiếu vuông góc của N lên AC và I là trung điểm của MN. Chứng minh rằng tam giác IHK cân. + Cho 9 số nguyên dương đôi một phân biệt, các số đều chỉ chứa các ước số nguyên tố gồm 2, 3, 5. Chứng minh rằng trong 9 số đã cho tồn tại 2 số mà tích của chúng là một số chính phương.
Đề thi thử tuyển sinh năm học 2017 2018 môn Toán trường THCS Nga Thiện Thanh Hóa
Nội dung Đề thi thử tuyển sinh năm học 2017 2018 môn Toán trường THCS Nga Thiện Thanh Hóa Bản PDF Đề thi thử tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THCS Nga Thiện – Thanh Hóa Đề thi thử tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THCS Nga Thiện – Thanh Hóa là bài kiểm tra gồm 5 bài toán tự luận, được cung cấp kèm theo lời giải chi tiết. Đề thi này sẽ giúp các thí sinh ôn tập và chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hà Nam
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hà Nam Bản PDF - Nội dung bài viết Bài toán: Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hà Nam Bài toán: Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hà Nam Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nam bao gồm 5 bài toán tự luận với lời giải chi tiết. Trong đó có một bài toán thú vị như sau: Cho đường tròn (O). Từ một điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA và MB của đường tròn (A, B là các tiếp điểm). Kẻ đường kính BE của đường tròn (O). Gọi F là giao điểm thứ hai của đường thẳng ME và đường tròn (O). Đường thẳng AF cắt MO tại điểm N. Gọi H là giao điểm của MO và AB. Chứng minh tứ giác MAOB nội tiếp đường tròn Chứng minh đường thẳng AE song song với đường thẳng MO Chứng minh: MN2 = NF.NA Chứng minh: MN = NH Bài toán trên đòi hỏi sự tư duy logic cũng như kiến thức vững chắc về đồ thị hình học. Hãy cân nhắc từng khả năng và áp dụng tri thức đã học để giải quyết bài toán một cách chính xác và hiệu quả.