Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hình học tọa độ Oxyz (dành cho học sinh Yếu - TB) - Đặng Việt Đông

giới thiệu đến bạn đọc tài liệu chuyên đề hình học tọa độ Oxyz (dành cho học sinh Yếu – TB), tài liệu được biên soạn bởi thầy Đặng Việt Đông gồm 39 trang, tài liệu tóm gọn lý thuyết cơ bản, phương pháp giải toán và tuyển chọn một số bài tập trắc nghiệm phương pháp tọa độ trong không gian Oxyz thuộc chương trình Hình học 12 chương 3, các bài tập ở mức độ nhận biết và thông hiểu, giúp học sinh có học lực yếu – trung bình lấy lại nền tảng kiến thức. Khái quát nội dung tài liệu hình học tọa độ Oxyz (dành cho học sinh Yếu – TB) – Đặng Việt Đông: BÀI 1 : HỆ TRỤC TỌA ĐỘ 1. Các phép toán về toạ độ của vectơ và của điểm. + Sử dụng các công thức về toạ độ của vectơ và của điểm trong không gian. + Sử dụng các phép toán về vectơ trong không gian. 2. Xác định điểm trong không gian. Chứng minh tính chất hình học. Diện tích – Thể tích. + Sử dụng các công thức về toạ độ của vectơ và của điểm trong không gian. + Sử dụng các phép toán về vectơ trong không gian. + Công thức xác định toạ độ của các điểm đặc biệt. + Tính chất hình học của các điểm đặc biệt. BÀI 2 : PHƯƠNG TRÌNH MẶT CẦU Dạng 1: Viết phương trình mặt cầu (S) có tâm I và bán kính R. Dạng 2: Viết phương trình mặt cầu (S) có tâm I và đi qua điểm A. Dạng 3: Viết phương trình mặt cầu (S) nhận đoạn thẳng AB cho trước làm đường kính. Dạng 4: Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D (mặt cầu ngoại tiếp tứ diện). Dạng 5: Viết phương trình mặt cầu (S) đi qua ba điểm A, B, C và có tâm I nằm trên mặt phẳng (P) cho trước. Dạng 6: Viết phương trình mặt cầu (S) có tâm I và tiếp xúc với mặt phẳng (P) cho trước. Dạng 7: Mặt cầu (S) có tâm I và cắt mặt phẳng (P) cho trước theo giao tuyến là một đường tròn thoả điều kiện. [ads] BÀI 3 : PHƯƠNG TRÌNH MẶT PHẲNG Dạng 1: Viết phương trình mặt phẳng (α) đi qua điểm M và có vectơ pháp tuyến n. Dạng 2: Viết phương trình mặt phẳng (α) đi qua điểm M và có cặp vectơ chỉ phương a, b. Dạng 3: Viết phương trình mặt phẳng (α) đi qua điểm M và song song với mặt phẳng (β). Dạng 4: Viết phương trình mặt phẳng (α) đi qua ba điểm A, B, C không thẳng hàng. Dạng 5: Viết phương trình mặt phẳng (α) đi qua một điểm M và một đường thẳng d không chứa M. Dạng 6: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng d. Dạng 7: Viết phương trình mặt phẳng (α) chưa hai đường thẳng cắt nhau d1 và d2. Dạng 8: Viết phương trình mặt phẳng (α) chứa đường thẳng d1 và song song với đường thẳng d2 (d1 và d2 chéo nhau). Dạng 9: Viết phương trình mặt phẳng (α) đi qua điểm M và song song với hai đường thẳng chéo nhau d1 và d2. Dạng 10: Viết phương trình mặt phẳng (α) chứa một đường thẳng d và vuông góc với mặt phẳng (β). Dạng 11: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với hai mặt phẳng cắt nhau (β) và (γ). Dạng 12: Viết phương trình mặt phẳng (α) chứa đường thẳng d cho trước và cách điểm M một khoảng k cho trước. Dạng 13: Viết phương trình mặt phẳng (α) tiếp xúc với mặt cầu (S) tại điểm H. BÀI 4 : PHƯƠNG TRÌNH ĐƯỜNG THẲNG Dạng 1: Viết phương trình đường thẳng Δ đi qua điểm M và có vectơ chỉ phương u. Dạng 2: Viết phương trình đường thẳng Δ đi qua hai điểm M, N. Dạng 3: Viết phương trình đường thẳng Δ đi qua điểm M và song song với đường thẳng d cho trước. Dạng 4: Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với mặt phẳng (α) cho trước. Dạng 5: Viết phương trình đường thẳng Δ là giao tuyến của hai mặt phẳng (P), (Q). Dạng 6: Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với hai đường thẳng d1, d2 Dạng 7: Viết phương trình đường thẳng Δ đi qua điểm M, vuông góc và cắt đường thẳng d. Dạng 8: Viết phương trình đường thẳng Δ đi qua điểm M và cắt hai đường thẳng d1, d2. Dạng 9: Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) và cắt cả hai đường thẳng d1, d2. Dạng 10: Viết phương trình đường thẳng Δ là đường vuông góc chung của hai đường thẳng chéo nhau d1, d2. Dạng 11: Viết phương trình đường thẳng Δ là hình chiếu của đường thẳng d lên mặt phẳng (α).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Vũ Minh (Tập 1)
Tài liệu gồm 122 trang phân dạng và tuyển chọn các bài tập trắc nghiệm có đáp án chuyên đề phương pháp tọa độ trong không gian, tài liệu được biên soạn bởi thầy Nguyễn Vũ Minh. Nội dung tài liệu gồm 4 phần: + Phần 01: HỆ TỌA ĐỘ TRONG KHÔNG GIAN + Phần 02:VEC TƠ CÙNG PHƯƠNG – TÍCH CÓ HƯỚNG + Phần 03: MẶT CẦU + Phần 4: PHƯƠNG TRÌNH MẶT PHẲNG
Phương pháp siêu tốc giải trắc nghiệm môn Toán chuyên đề hình học giải tích trong không gian
Cuốn sách Phương pháp siêu tốc giải trắc nghiệm môn Toán chuyên đề hình học giải tích trong không gian của các tác giả Lương Đức Trọng, Đặng Đình Hanh, Phạm Hoàng Hà gồm 360 trang với các chuyên đề bám sát các bài học trong SGK và một số chuyên đề mở rộng, nâng cao đáp ứng cho các bài tập có tính chất phân loại cao trong đề thi. Cấu trúc của mỗi chuyên đề gồm: tóm tắt nội dung kiến thức cơ bản, các dạng bài tập cơ bản, các ví dụ ở dạng bài tập trắc nghiệm khách quan được phân hóa theo 4 mức độ: nhận biết, thông hiểu, vận dụng và vận dụng cao; trong đó các bài tập cơ bản chiếm khoảng 70% và các bài tập nâng cao chiếm 30%. Ở mỗi ví dụ, ngoài việc trình bày lời giải để học sinh nắm vững kiến thức cơ bản, trong nhiều ví dụ có trình bày những nhận xét đặc thù để giúp học sinh có thể nhanh chóng loại bỏ một hoặc hai đáp án gây nhiễu. Đặc biệt, sau nhiều ví dụ có phần thủ thuật chọn nhanh để giúp học sinh nhanh chóng tìm được đáp án chính xác. Trong chuyên đề cuối cùng, ngoài các bài tập tổng hợp của hình giải tích không gian còn có phần ứng dụng của hình giải tích không gian vào giải một số bài tập hình không gian. Cuối mỗi chuyên đề có bài tập để học sinh tự rèn luyện. Kết thúc mỗi chuyên đề là phần Đáp án – Hướng dẫn giải, phần này bao gồm đáp án của tất cả các câu hỏi, bài tập và hướng dẫn giải những câu hỏi, bài tập điển hình hoặc những bài tập khó để học sinh có thể đối chiếu, qua đó giúp học sinh tích lũy kinh nghiệm, hình thành phương pháp giải các bài tập. [ads] Sách gồm các chủ đề : 1. Tọa độ trong không gian 2. Tích có hướng của hai vectơ và một số ứng dụng 3. Phương trình mặt phẳng 4. Phương trình đường thẳng 5. Vị trí tương đối của đường thẳng, mặt phẳng 6. Bài toán về hình chiếu vuông góc trong không gian 7. Góc và khoảng cách 8. Phương trình mặt cầu 9. Điểm, đường thẳng, mặt phẳng và mặt cầu 10. Ôn tập, các bài toán tổng hợp 11. Một số đề tổng hợp
Chuyên đề mặt cầu trong không gian Oxyz - Phạm Văn Long
Tài liệu gồm 28 trang gồm lý thuyết mặt cầu, hướng dẫn phương pháp giải các dạng toán và bài tập trắc nghiệm chuyên đề mặt cầu trong không gian Oxyz. 1. Tóm tắt lý thuyết, phương trình  mặt cầu và một số công thức tính cơ bản 2. Ví dụ minh họa về 2 dạng toán + Dạng 1: Viết phương trình mặt cầu Thuật toán 1: Bước 1: Xác định tâm I Bước 2: Xác định bán kính R của (S) Bước 3: Mặt cầu (S) có tâm I và bán kính R Thuật toán 2: Gọi phương trình dạng tổng quát của (S), sử dụng các điều kiện để tìm các tham số [ads] Kỹ năng xác định tâm và bán kính của đường tròn trong không gian Cho mặt cầu (S) tâm I bán kính R. Mặt phẳng (P) cắt (S) theo một đường tròn (C) Bước 1: Lập phương trình đường thẳng d qua I và vuông góc với mặt phẳng (P) Bước 2: Tâm H của đường tròn (C) là giao điểm của d và mặt phẳng (P) Bước 3: Gọi r là bán kính của (C) + Dạng 2: Sự tương giao và sự tiếp xúc Đường thẳng Δ là tiếp tuyến của (S) ⇔ d(I; Δ) = R Mặt phẳng (α) là tiếp diện của (S) ⇔ d(I; (α)) = R 3. Bài tập trắc nghiệm tự luyện được sắp xếp theo mức độ phân loại
Hiểu rõ bản chất hình học của bài toán cực trị tọa độ không gian - Võ Trọng Trí
Để giải nhanh bài toán cực trị trong hình học tọa độ không gian, chúng ta cần tìm được vị trí đặc biệt của nghiệm hình để cực trị (số đo góc, khoảng cách, độ dài) xảy ra. Khi biết vị trí đặc biệt đó, việc tính toán chỉ còn vài dòng đơn giản là ra kết quả. Sau đây các các bài toán cực trị tọa độ không gian thường gặp, bản chất hình học của nó và công thức giải nhanh bài toán đó. + Bài toán 1: Viết phương trình mặt phẳng đi qua một đường thẳng d và cách một điểm M ∉ d một khoảng lớn nhất. + Bài toán 2: Viết phương trình mặt phẳng (P) chứa đường thẳng d, tạo với đường thẳng d’(d’ không song song với d) một góc lớn nhất. + Bài toán 3: Viết phương trình đường thẳng d đi qua một điểm A cho trước và nằm trong mặt phẳng (P) cho trước và cách một điểm M cho trước một khoảng nhỏ nhất. (AM không vuông góc với (P)). + Bài toán 4: Viết phương trình đường thẳng d đi qua điểm A cho trước, nằm trong mặt phẳng (P) và cách điểm M (M khác A, MA không vuông góc với (P)) một khoảng lớn nhất. [ads] + Bài toán 5: Cho mặt phẳng (P) và điểm A ∈ (P), và đường thẳng d (d cắt (P) và d không vuông góc với (P)). Viết phương trình đường thẳng d’ đi qua A, nằm trong (P) và tạo với d một góc nhỏ nhất. + Bài toán 6: Cho mặt phẳng (P) và điểm A ∈ (P) và đường thẳng d cắt (P) tại điểm khác M khác A. Viết phương trình đường thẳng d’ nằm trong (P), đi qua A và khoảng cách giữa d và d’ lớn nhất. + Bài toán 7: Cho mặt phẳng (P) và đường thẳng d//(P). Viết phương trình đường thẳng d//d′ và cách d một khoảng nhỏ nhất. + Bài toán 8: Viết phương trình mặt phẳng đi qua điểm A và cách điểm M (khác A) một khoảng lớn nhất. + Bài toán 9: Các bài toán khác đòi hỏi chúng ta cần có trực giác hình học để giải nhanh.