Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bắc Giang

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bắc Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang Đề thi tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Giang đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang bao gồm 02 trang với 20 câu hỏi trắc nghiệm và 05 câu hỏi tự luận. Thời gian làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang: + Một công ty X dự định điều động một số xe để chở 100 tấn hàng. Khi sắp khởi hành thì 5 xe được điều đi làm việc khác nên mỗi xe còn lại phải chở thêm 1 tấn hàng so với dự định. Hỏi số xe mà công ty X dự định điều động, biết mỗi xe chở khối lượng hàng như nhau. + Cho đường tròn tâm O, bán kính R = 3cm. Gọi A, B là hai điểm phân biệt cố định trên đường tròn (O;R) (AB không là đường kính). Trên tia đối của tia BA lấy một điểm M (M khác B). Qua M kẻ hai tiếp tuyến MC, MD với đường tròn đã cho (C, D là hai tiếp điểm). a) Chứng minh tứ giác OCMD nội tiếp trong một đường tròn. b) Khi CMD = 60 độ, chứng minh rằng điểm E trên đường tròn là trọng tâm của tam giác MCD. c) Tìm vị trí của điểm M để tứ giác MPNQ có diện tích nhỏ nhất khi M di chuyển trên tia đối của tia BA. + Cho đoạn thẳng AC, B là điểm thuộc đoạn AC sao cho BC = 3BA. Gọi AT là một tiếp tuyến của đường tròn đường kính BC (T là tiếp điểm), BC = 6 cm. Độ dài đoạn thẳng AT bằng?

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 sở GDKHCN Bạc Liêu
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 sở GDKHCN Bạc Liêu Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu Đề tuyển sinh môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu Chào đón quý thầy cô và các em học sinh lớp 9. Đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2022 - 2023 của sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu: 1. Cho parabol (P): y = x² và đường thẳng (d): y = 3x - 2. Hãy vẽ đồ thị của (P) và tìm tọa độ giao điểm của (P) với đường thẳng (d) dựa trên phép tính. 2. Giải phương trình x² - 5x + m + 2 = 0 (m là tham số): a) Giải phương trình khi m = 2. b) Tìm điều kiện của m để phương trình (1) có hai nghiệm phân biệt. c) Gọi x₁ và x₂ là hai nghiệm phân biệt của phương trình (1). Tìm giá trị lớn nhất của biểu thức P = x₁ + x₂. 3. Trên nửa đường tròn tâm O đường kính AB = 2R, vẽ điểm C (C khác A và B), kẻ CH vuông góc với AB (H thuộc AB). Gọi D là điểm bất kì trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại E. a) Chứng minh tứ giác BHDE nội tiếp. b) Chứng minh AD∙EC = CD∙AC. c) Khi điểm C di chuyển trên nửa đường tròn (C khác A, B và trung điểm của cung AB), xác định vị trí của điểm C sao cho chu vi tam giác COH lớn nhất.
Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Ninh Bình
Nội dung Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán (chuyên) năm 2022-2023 sở GD ĐT Ninh Bình Đề tuyển sinh THPT môn Toán (chuyên) năm 2022-2023 sở GD ĐT Ninh Bình Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Ninh Bình. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Dưới đây là một số câu hỏi được trích dẫn từ đề thi: Tìm tất cả các số nguyên dương $a$ và các số nguyên tố $p$ thỏa mãn $a^2 = 7p^4 + 9$. Cho tam giác $ABC$ (với $AB < AC$) nội tiếp đường tròn $(O)$. Gọi $M$, $N$ lần lượt là trung điểm của các cạnh $AB$, $AC$. Đường thẳng $MN$ cắt $(O)$ tại các điểm $P$, $Q$ ($P$ thuộc cung nhỏ $AB$ và $Q$ thuộc cung nhỏ $AC$). Lấy điểm $D$ trên cạnh $BC$ ($D$ khác $B$ và $D$ khác $C$). Đường tròn ngoại tiếp tam giác $BDP$ cắt $AB$ tại điểm $I$ ($I$ khác $B$). Đường thẳng $DI$ cắt $AC$ tại $K$. Chứng minh rằng tứ giác $AIPK$ nội tiếp. Chứng minh rằng $\frac{PK}{PD} = \frac{QB}{QA}$. Đường thẳng $CP$ cắt đường tròn ngoại tiếp tam giác $BDP$ tại $G$ ($G$ khác $P$). Đường thằng $IG$ cắt đường thẳng $BC$ tại điểm $E$. Chứng minh rằng khi điểm $D$ di chuyển trên cạnh $BC$ thì tỉ số $\frac{CD}{CE}$ không đổi. Cho bảng ô vuông $3 \times 3$ gồm ba dòng và ba cột. Người ta ghi tất cả các số thuộc tập hợp $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ vào các ô vuông của bảng, sao cho tổng các số trong mỗi bảng vuông con cỡ $2 \times 2$ đều bằng nhau. Hãy chỉ ra một cách ghi các số vào bảng thỏa mãn yêu cầu bài toán. Trong tất cả các cách ghi các số vào bảng thỏa mãn yêu cầu bài toán, tìm giá trị lớn nhất của tổng các số trong mỗi bảng vuông con cỡ $2 \times 2$. Hy vọng các em sẽ ôn tập và làm bài thi tốt! Chúc quý thầy cô giáo và các em học sinh thành công!
Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Thuận
Nội dung Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Thuận Bản PDF - Nội dung bài viết Đề Thi Tuyển Sinh THPT Môn Toán (Chuyên) Năm 2022-2023 Sở GD&ĐT Bình Thuận Đề Thi Tuyển Sinh THPT Môn Toán (Chuyên) Năm 2022-2023 Sở GD&ĐT Bình Thuận Xin chào quý thầy cô và các em học sinh lớp 9! Trong kỳ thi tuyển sinh vào lớp 10 THPT công lập môn Toán chuyên (hệ số 2) năm học 2022-2023 của sở GD&ĐT Bình Thuận, chúng ta sẽ cùng nhau trải qua những thử thách và cơ hội để thể hiện khả năng và kiến thức của mình. Dưới đây là một số câu hỏi mẫu trong đề thi chính thức: Câu 1: Hai bạn An và Bình đang so sánh số lượng viên bi mà họ hiện có. An nói rằng nếu Bình cho An một số viên bi từ túi của mình, thì An sẽ có số viên bi gấp 6 lần số viên bi của Bình. Ngược lại, nếu An cho Bình số viên bi như vậy, thì số viên bi của Bình sẽ bằng 1/3 số viên bi của An. Hãy tìm số viên bi ít nhất mà bạn An có thể có. Câu 2: Trong tam giác ABC có đường tròn nội tiếp tâm O, tiếp xúc với các cạnh AB, AC tại D và E. Gọi I là tâm đường tròn nội tiếp tam giác ADE. Hãy chứng minh rằng A, I, O thẳng hàng và I thuộc đường tròn (O). Sau đó, chứng minh rằng tứ giác BCMN nội tiếp và tam giác BMC vuông. Câu 3: Người ta viết các số nguyên 1, 2, 3, 4, 5, 6, 7, 8 lên các đỉnh của một bát giác lồi sao cho tổng các số ở mỗi ba đỉnh liên tiếp không nhỏ hơn k (với k là số nguyên dương). Hãy tìm giá trị lớn nhất của k trong trường hợp này. Chúc các em sẽ làm tốt trong kỳ thi sắp tới và đạt được kết quả cao nhất! Hãy tự tin và cố gắng hết mình!
Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Gia Lai
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Gia Lai Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên Toán (chuyên) 2022 2023 sở GD ĐT Gia Lai Đề thi tuyển sinh chuyên Toán (chuyên) 2022 2023 sở GD ĐT Gia Lai Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Gia Lai. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Gia Lai bao gồm các câu hỏi sau: Tìm một đa thức bậc ba P(x) với hệ số nguyên, biết x là một nghiệm của P(x) và P(1) = -6. Tìm tất cả các số nguyên x, y thỏa mãn phương trình: x^2y^2 – 2x^2y + 3x^2 + 4xy – 4x + 2y^2 – 4y – 1 = 0. Cho tam giác ABC nhọn nội tiếp đường tròn (O), kẻ ba đường cao AD, BE, CF cắt nhau tại H, lấy điểm M trên cung nhỏ BC (M khác B và C). Gọi P là điểm đối xứng với M qua AB. Chứng minh rằng APB = ACB và tứ giác AHBP nội tiếp đường tròn. Chứng minh rằng H là tâm đường tròn nội tiếp tam giác FDE. Tìm giá trị nhỏ nhất của biểu thức T. Hi vọng các em sẽ tự tin và làm tốt trong kỳ thi sắp tới. Chúc các em đạt được kết quả cao trong bài thi sắp tới!