Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Thanh Sơn - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Sơn, tỉnh Phú Thọ; đề thi gồm 03 trang với 16 câu trắc nghiệm (08 điểm) và 04 câu tự luận (12 điểm), thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và biểu điểm. Trích dẫn Đề thi HSG Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Thanh Sơn – Phú Thọ : + Cho nửa đường tròn tâm O đường kính BC và điểm A nằm trên nửa đường tròn (A khác B, C). Hạ AH vuông góc với BC (H thuộc BC). Gọi I và K lần lượt đối xứng với H qua AB và AC. Diện tích tứ giác BIKC lớn nhất bằng? + Một người mang trứng gà ra chợ bán. Tổng số trứng gà bán ra được tính như sau: Ngày thứ nhất bán được 8 trứng và 1 8 số trứng còn lại. Ngày thứ hai bán được 16 trứng và 1 8 số trứng còn lại. Ngày thứ ba bán được 24 trứng và 1 8 số trứng còn lại. Cứ như vậy cho đến ngày cuối cùng thì bán hết trứng. Biết số trứng gà bán được mỗi ngày đều bằng nhau. Số ngày người đó bán hết số trứng gà là? + Cho điểm C thuộc nửa đường tròn đường kính AB, H là hình chiếu của C trên AB. Các điểm D và E thuộc nửa đường tròn sao cho HC là tia phân giác của góc DHE. Hệ thức nào sau đây đúng?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Tư ngày 30 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT TP Hồ Chí Minh : + Cho đường tròn (O), đường kính AB cố định. Gọi C là điểm di động trên (O) (C khác A và B), vẽ đường kính CD của đường tròn (O). Tiếp tuyến tại B của đường tròn (O) cắt hai đường thẳng AC, AD lần lượt tại E và F. Gọi H là trung điểm của đoạn thẳng BF; K là giao điểm của hai đường thẳng OE và AH. a) Chứng minh năm điểm E, C, D, F, K cùng thuộc một đường tròn. b) Gọi I là tâm của đường tròn ngoại tiếp tứ giác ECDF. Chứng minh điểm I luôn thuộc một đường thẳng cố định khi C di động trên đường tròn (O). + Qua điểm M thuộc cạnh BC của tam giác ABC ta kẻ các đường thẳng song song với các cạnh AB, AC; chúng tạo thành với hai cạnh ấy một hình bình hành. Tìm vị trí của M để hình bình hành đó có diện tích lớn nhất. + Tìm tất cả các cặp số tự nhiên (m;n) với m >= n sao cho A = (m + n)3 là ước của B = 2n(3m2 + n2) + 8.
Đề thi học sinh giỏi Toán THCS năm 2021 - 2022 sở GDĐT Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi (HSG) môn Toán THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào thứ Bảy ngày 02 tháng 04 năm 2022.
Đề thi HSG Toán 9 năm 2021 - 2022 phòng GDĐT Cầu Ngang - Trà Vinh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Cầu Ngang, tỉnh Trà Vinh. Trích dẫn đề thi HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT Cầu Ngang – Trà Vinh : + Cho tam giác ABC cân tại A (BAC = 90°) biết đường cao AD và trực tâm H. Tính độ dài AD biết AH = 14cm và BH = CH = 30cm. + Quãng đường AB gồm một đoạn lên dốc dài 4km và một đoạn xuống dốc dài 5km. Một người đi xe đạp từ A đến B hết 40 phút và đi từ B về A hết 41 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc và lúc xuống dốc. + Cho tam giác đều ABC nội tiếp đường tròn (O). Trên cung BC không chứa điểm A ta lấy điểm P bất kỳ (P khác B và P khác C). Các đoạn PA và BC cắt nhau tại Q. a) Giả sử D là một điểm trên đoạn PA sao cho PD = PB. Chứng minh rằng tam giác PDB đều b) Chứng minh rằng PA = PB + PC c) Chứng minh hệ thức 1/PQ = 1/PB + 1/PC.
Đề thi học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Sơn La; kỳ thi được diễn ra vào ngày 26 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Sơn La : + Cho đường tròn (O) và đường thẳng d cố định ((O) và d không có điểm chung). Điểm P di động trên đường thẳng d, từ P vẽ hai tiếp tuyến PA, PB (A, B thuộc đường tròn (O)), PO giao AB tại I. Gọi H là chân đường vuông góc hạ từ điểm A đến đường kính BC, E là giao điểm của hai đường thẳng CP và AH. Gọi F là giao điểm thứ hai của đường thẳng CP và đường tròn (O). Chứng minh rằng: a) PF.PC = PI.PO. b) E là trung điểm của đoạn thẳng AH. c) Điểm I luôn thuộc một đường cố định khi P di động trên d. + Tìm nghiệm nguyên của phương trình: 2x2y + 3xy + y = x2 + 2xy2 + 3x + 1. + Cho ba số thực x, y, z thỏa mãn các điều kiện: x > 0, 5×2 = yz, x + y + z = xyz. Chứng minh rằng?