Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình đường thẳng

Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình đường thẳng, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu phương trình đường thẳng dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình đường thẳng: A. KIẾN THỨC CƠ BẢN 1. Viết phương trình đường thẳng ∆ đi qua hai điểm phân biệt A và B. 2. Đường thẳng ∆ đi qua điểm M và song song với d. 3. Viết phương trình đường thẳng ∆ đi qua điểm M và vuông góc với mặt phẳng (α). 4. Viết phương trình đường thẳng ∆ đi qua điểm M và vuông góc với hai đường thẳng d1 và d2 (hai đường thẳng không cùng phương). 5. Viết phương trình đường thẳng ∆ đi qua điểm M vuông góc với đường thẳng d và song song với mặt phẳng (α). 6. Viết phương trình đường thẳng ∆ đi qua điểm A và song song với hai mặt phẳng (α) và (β) với (α) và (β) là hai mặt phẳng cắt nhau. 7. Viết phương trình đường thẳng ∆ là giao tuyến của hai mặt phẳng (α) và (β). 8. Viết phương trình đường thẳng ∆ đi qua điểm A và cắt hai đường thẳng d1 và d2 (A không thuộc d1 và d2). 9. Viết phương trình đường thẳng ∆ nằm trong mặt phẳng (α) và cắt hai đường thẳng d1 và d2. 10. Viết phương trình đường thẳng ∆ đi qua điểm A, vuông góc và cắt d. 11. Viết phương trình đường thẳng ∆ đi qua điểm A, vuông góc với d1 và cắt d2 với A ∉ d2. 12. Viết phương trình đường thẳng ∆ đi qua điểm A, cắt đường thẳng d và song song với mặt phẳng (α). 13. Viết phương trình đường thẳng ∆ nằm trong mặt phẳng (α) cắt và vuông góc đường thẳng d. 14. Viết phương trình đường thẳng ∆ đi qua giao điểm A của đường thẳng d và mặt phẳng (α), nằm trong (α) và vuông góc đường thẳng d (ở đây d không vuông góc với (α)). 15. Viết phương trình đường thẳng ∆ là đường vuông góc chung của hai đường thẳng chéo nhau d1 và d2. 16. Viết phương trình đường thẳng ∆ song song với đường thẳng d và cắt cả hai đường thẳng d1 và d2. 17. Viết phương trình đường thẳng ∆ vuông góc với mặt phẳng (α) và cắt cả hai đường thẳng d1 và d2. 18. Viết phương trình ∆ là hình chiếu vuông góc của d lên mặt phẳng (α). 19. Viết phương trình ∆ là hình chiếu song song của d lên mặt phẳng (α) theo phương d’. B. KỸ NĂNG CƠ BẢN 1. Học sinh xác định được vectơ chỉ phương và điểm nào đó thuộc đường thẳng khi cho trước phương trình. 2. Học sinh biết cách chuyển từ phương trình tham số qua phương trình chính tắc và ngược lại. 3. Học sinh lập được phương trình chính tắc và phương trình tham số. 4. Học sinh tìm được hình chiếu, điểm đối xứng. C. BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt phẳng
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt phẳng, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu phương trình mặt phẳng dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt phẳng: A. TỔNG HỢP LÝ THUYẾT Dạng 1: Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó. Dạng 2: Viết phương trình mặt phẳng (α) đi qua một điểm M(x0;y0;z0) và song song với một mặt phẳng (β): Ax + By + Cz + D = 0 cho trước. Dạng 3: Viết phương trình mặt phẳng (α) đi qua 3 điểm A, B, C không thẳng hàng. Dạng 4: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng ∆. Dạng 5: Viết phương trình mặt phẳng (α) chứa đường thẳng ∆, vuông góc với mặt phẳng (β). Dạng 6: Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β). Dạng 7: Viết phương trình mặt phẳng (α) chứa đường thẳng ∆ và song song với ∆′ (∆, ∆′ chéo nhau). Dạng 8: Viết phương trình mặt phẳng (α) chứa đường thẳng ∆ và điểm M. Dạng 9: Viết phương trình mặt phẳng (α) chứa 2 đường thẳng cắt nhau ∆ và ∆′. Dạng 10: Viết phương trình mặt phẳng (α) chứa 2 đường thẳng song song ∆ và ∆′. Dạng 11: Viết phương trình mặt phẳng (α) đi qua một điểm M và song song với hai đường thẳng ∆ và ∆′ chéo nhau cho trước. Dạng 12: Viết phương trình mặt phẳng (α) đi qua một điểm M và vuông góc với hai mặt phẳng (P) và (Q) cho trước. Dạng 13: Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) một khoảng k cho trước. Dạng 14: Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) cho trước và cách điểm M một khoảng k cho trước. Dạng 15: Viết phương trình mặt phẳng (α) tiếp xúc với mặt cầu (S). Dạng 16: Viết phương trình mặt phẳng (α) chứa một đường thẳng ∆ và tạo với một mặt phẳng (β) cho trước một góc ϕ cho trước.
Tóm tắt lý thuyết và bài tập trắc nghiệm tọa độ trong không gian
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tọa độ trong không gian, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu tọa độ trong không gian dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tọa độ trong không gian: A. LÝ THUYẾT 1. Hệ trục tọa độ trong không gian. 2. Tọa độ của vectơ. 3. Tọa độ của điểm. 4. Tích có hướng của hai vectơ. 5. Một vài thao tác sử dụng máy tính bỏ túi (Casio Fx570 Es Plus, Casio Fx570 Vn Plus, Vinacal 570 Es Plus). B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách, một chủ đề rất quan trọng trong chương trình Hình học 11 chương 3. Bên cạnh tài liệu góc và khoảng cách dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách: A. KIẾN THỨC CƠ BẢN I. GÓC 1. Góc giữa hai mặt phẳng. 2. Góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng. II. KHOẢNG CÁCH 1. Khoảng cách từ một điểm đến mặt phẳng, khoảng cách giữa hai mặt phẳng song song. 2. Khoảng cách từ một điểm đến một đường thẳng – khoảng cách giữa hai đường thẳng. B. KỸ NĂNG CƠ BẢN + Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến mặt phẳng; biết cách khoảng cách giữa hai mặt phẳng song song. + Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến một đường thẳng; biết cách tính khoảng cách giữa hai đường thẳng song song; khoảng cách giữa hai đường thẳng chéo nhau; khoảng cách từđường thẳng đến mặt phẳng song song. + Nhớ và vận dụng được công thức góc giữa hai đường thẳng; góc giữa đường thẳng và mặt phẳng; góc giữa hai mặt phẳng. + Áp dụng được góc và khoảng cách vào các bài toán khác. C. BÀI TẬP TRẮC NGHIỆM
Xác định tâm, bán kính, diện tích và thể tích của mặt cầu
Tài liệu gồm 12 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán xác định tâm, bán kính, diện tích và thể tích của mặt cầu, được phát triển dựa trên câu 14 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu xác định tâm, bán kính, diện tích và thể tích của mặt cầu: A. KIẾN THỨC CẦN NHỚ 1. Phương trình mặt cầu dạng chính tắc Cho mặt cầu có tâm I(a;b;c) có bán kính R. Khi đó phương trình chính tắc của mặt cầu là (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. 2. Phương trình mặt cầu dạng khai triển Phương trình mặt cầu dạng khai triển là (S): x^2 + y^2 + z^2 – 2ax – 2by – 2cz + d = 0. Khi đó mặt cầu có có tâm I(a;b;c), bán kính R = √(a^2 + b^2 + c^2 – d) với a^2 + b^2 + c^2 – d > 0. B. BÀI TẬP MẪU 1. Đề bài : Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu: (S): (x + 1)^2 + (y – 2)^2 + (z – 1)^2 = 9. Tìm tọa độ tâm I và tính bán kính R của (S). 2. Phân tích hướng dẫn giải a. Dạng toán: Đây là dạng toán sử dụng tính chất để xác định tâm và bán kính của mặt cầu. b. Hướng giải: + Bước 1: Dựa trên phương trình mặt cầu dạng chính tắc tìm tâm và bán kính của mặt cầu. + Bước 2: Mặt cầu (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2 có tâm I(a;b;c) và bán kính R. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN (có đáp án và lời giải chi tiết).