Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập nâng cao chuyên đề hình học không gian

Tài liệu gồm 94 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tuyển tập 99 bài tập nâng cao chuyên đề hình học không gian, có đáp án và lời giải chi tiết, dành cho giáo viên và học sinh ôn thi học sinh giỏi, học sinh năng khiếu và chuyên Toán. Trích dẫn Bài tập nâng cao chuyên đề hình học không gian : + Cho tứ diện đều ABCD có cạnh bằng 1, hai điểm M và N lần lượt nằm trên các đoạn AB và CD, sao cho BN DN. a) Chứng minh rằng AD BC. Tìm điểm I cách đều 4 đỉnh của tứ diện ABCD b) Khi M, N lần lượt là trung điểm của AB và CD, gọi là mặt phẳng chứa BN và song song với MC. Tính chu vi thiết diện tạo bởi và tứ diện ABCD c) Tìm giá trị lớn nhất và giá trị nhỏ nhất của MN khi M, N thay đổi trên các đoạn AB và C D. + Cho hình hộp ABCD A B C D. Trên cạnh AB lấy điểm M khác A và B.Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng ACD a) Trình bày cách dựng thiết diện của hình hộp và mặt phẳng (P). b) Xác định vị trí của M để thiết diện nói trên có diện tích lớn nhất. + Cho lăng trụ tam giác ABC A B C. Trên tia đối của tia AB lấy điểm M sao cho AM = 1 2 AB. Gọi E là trung điểm của CA. a) Xác định thiết diện của lăng trụ cắt bởi mặt phẳng (MEB’) b) Gọi D = BC (MEB’) K = AA’ (MEB’). Tính tỷ số CB CD và AA’.

Nguồn: toanmath.com

Đọc Sách

Tính khoảng cách trong hình học không gian bằng phương pháp thể tích - Nguyễn Tuấn Anh
Tài liệu gồm 14 trang hướng dẫn giải bài toán tính khoảng cách trong hình học không gian bằng phương pháp thể tích và các ví dụ minh họa. Câu khoảng cách của hình học không gian (thuần túy) trong đề thi THPTQG dù không là một câu khó nhưng để có thể nhìn được chân đường cao hoặc đoạn vuông góc chung đối với học sinh trung bình yếu không phải dễ. Bài viết mong muốn giúp các em tự tin hơn với câu này, dù là điểm 8,9,10 là khó lấy, nhưng điểm 7 với các em thì hoàn toàn có thể. (Bài viết có tham khảo nhiều nguồn khác nhau nên khó lòng trích dẫn các nguồn ở đây xin chân thành cám ơn các tác giả, các nguồn tài liệu đã tham khảo để viết bài này). [ads] Ý tưởng: Ta có một hình chóp: S.ABC việc tính thể tích của khối chóp này được thực hiện rất dễ dàng (đường cao hạ từ S xuống mặt đáy (ABC)), ta cần tính khoảng cách từ C đến (SAB) tức tìm chiều cao CE. Vì thể của hình chóp là không thay đổi dù ta có xem điểm nào đó (S, A, B, C) là đỉnh vì vậy nếu ta biết diện tích ∆SAB thì khoảng cách cần tìm đó CE = 3V/SΔSAB. Có thể gọi là dùng thể tích 2 lần. Chú ý: Khi áp dụng phương pháp này ta cần nhớ công thức tính diện tích của tam giác: SΔSAB = √p,(p – a)(p – b)(p – c) với p là nửa chu vi và a, b, c là kích thước của 3 cạnh.
Tuyển tập các bài toán hình học không gian - Châu Ngọc Hùng
Tuyển tập các bài toán hình học không gian được phân dạng theo khối hình, tài liệu gồm 75 trang do thầy Châu Ngọc Hùng biên soạn. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi; hai đường chéo AC = 2√3a, BD = 2a và cắt nhau tại O; hai mặt phẳng (S AC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (S AB) bằng a = √3/4, tính thể tích khối chóp S.ABCD theo a. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng S A và mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD, biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho lăng trụ tam giác ABC.A1B1C1 có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt đáy bằng 30 độ. Hình chiếu vuông góc H của đỉnh A trên mặt phẳng (A1B1C1) thuộc đường thẳng B1C1. Tính thể tích khối lăng trụ ABC.A1B1C1 và tính khoảng cách giữa hai đường thẳng AA1 và B1C1 theo a.
Chuyên đề hình học không gian 2016 - Trần Quốc Nghĩa
Tài liệu chuyên đề hình học không gian 2016 do thầy Trần Quốc Nghĩa biên soạn gồm 2 phần: Phần 1: Tổng hợp các kiến thức hình học không gian, bao gồm: Các phương pháp chứng minh cơ bản trong hình học không gian 1. Chứng minh đường thẳng d song song mp(α) (d ⊄ (α)) 2. Chứng minh mp(α) song song với mp(β) 3. Chứng minh hai đường thẳng song song 4. Chứng minh đường thẳng d vuông góc với mặt phẳng (α) 5. Chứng minh hai đường thẳng d và d’ vuông góc 6. Chứng minh hai mặt phẳng (α) và (β) vuông góc [ads] Các công thức tính thường được sử dụng Cách vẽ và xác định các yếu tố góc, khoảng cách trong các khối đa diện thường gặp 1. Hình chóp S.ABCD, có đáy ABCD là hình chữ nhật (hoặc hình vuông) và SA vuông góc với đáy 2. Hình chóp S.ABCD, có đáy ABCD là hình thang vuông tại A và B và SA vuông góc với đáy 3. Hình chóp tứ giác đều S.ABCD 4. Hình chóp S.ABC, SA vuông góc với đáy 5. Hình chóp tam giác đều S.ABC 6. Hình chóp S.ABC có một mặt bên (SAB) vuông góc với đáy (ABCD) 7. Hình chóp S.ABCD có một mặt bên (SAB) vuông góc với đáy (ABCD) và ABCD là hình chữ nhật hoặc hình vuông 8. Hình lăng trụ 9. Mặt cầu ngoại tiếp hình chóp Phần 2: Tổng hợp 150 bài toán hình học không gian trong các đề thi thử 2016.
Các phương pháp tính thể tích khối đa diện
Tài liệu gồm 34 trang hướng dẫn các phương pháp tính thể tích khối đa diện và các bài tập vận dụng. §1.ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG ĐL1:Nếu đường thẳng d không nằm trên mp (P) và song song với đường thẳng a nằm trên mp (P) thì đường thẳng d song song với mp(P) ĐL2: Nếu đường thẳng a song song với mp (P) thì mọi mp (Q) chứa a mà cắt mp (P) thì cắt theo giao tuyến song song với a ĐL3: Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó §2.HAI MẶT PHẲNG SONG SONG ĐL1: Nếu mp (P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau ĐL2: Nếu một đường thẳng nằm một trong hai mặt phẳng song song thì song song với mặt phẳng kia ĐL3: Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song [ads] §1.ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG ĐL1: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mp (P) thì đường thẳng d vuông góc với mp (P) ĐL2: (Ba đường vuông góc) Cho đường thẳng a không vuông góc với mp (P) và đường thẳng b nằm trong (P). Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P) §2.HAI MẶT PHẲNG VUÔNG GÓC ĐL1: Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau ĐL2: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q) ĐL3: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P) ĐL4: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba