Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán khối đa diện bằng sơ đồ tư duy - Ngụy Như Thái

Tài liệu gồm 46 trang hướng dẫn phương pháp giải toán khối đa diện bằng sơ đồ tư duy, đây là sáng kiến kinh nghiệm của thầy Ngụy Như Thái (Giáo viên trường THPT An Phước). Thực tế giảng dạy cho thấy môn Toán học trong trường phổ thông là một trong những môn học khó, phần lớn các em học môn Toán rất yếu đặc biệt là hình học không gian, nếu không có những bài giảng và phương pháp dạy môn Hình học phù hợp đối với thế hệ học sinh thì dễ làm cho học sinh thụ động trong việc tiếp thu, cảm nhận. Đã có hiện tượng một số bộ phận học sinh không muốn học Hình học, ngày càng xa rời với giá trị thực tiễn của Hình học. Nhiều giáo viên chưa quan tâm đúng mức đối tượng giáo dục, chưa đặt ra cho mình nhiệm vụ và trách nhiệm nghiên cứu, hiện tượng dùng đồng loạt cùng một cách dạy, một bài giảng cho nhiều lớp, nhiều thế hệ học trò vẫn còn nhiều. Do đó phương pháp ít có tiến bộ mà người giáo viên đã trở thành người cảm nhận, truyền thụ tri thức một chiều, còn học sinh không chủ động trong quá trình lĩnh hội tri thức – kiến thức Hình học làm cho học sinh không thích học môn Hình học. Xuất phát từ mục đích dạy – học phát huy tính tích cực chủ động sáng tạo của học sinh nhằm giúp các em xây dựng các kiến thức, kỹ năng, thái độ học tập cần thiết, kỹ năng tư duy, tổng kết, hệ thống lại những kiến thức, vấn đề cơ bản vừa mới lĩnh hội giúp các em củng cố bước đầu, khắc sâu trọng tâm bài học, thì sơ đồ tư duy là một biểu đồ được sử dụng để thể hiện từ ngữ, ý tưởng, nhiệm vụ hay các mục được liên kết và sắp xếp tỏa tròn quanh từ khóa hay ý trung tâm. Sơ đồ tư duy là một phương pháp đồ họa thể hiện ý tưởng và khái niệm trong các bài học mà giáo viên cần truyền đạt, làm rõ các chủ đề qua đó giúp các em hiểu rõ hơn và nắm vững kiến thức một cách có hệ thống. [ads] Để cho học sinh có hứng thú trong học tập bộ môn Hình học hơn, tôi có một ý tưởng là: Dùng sơ đồ tư duy hệ thống kiến thức chương 1 – Thể tích khối đa diện –Hình học 12 với mong muốn thay đổi cách giảng dạy truyền thụ tri thức một chiều sang cách tiếp cận kiến tạo kiến thức và suy nghĩ. Ý tưởng là sơ đồ tư duy được xây dựng theo quá trình từng bước khi người dạy và người học tương tác với nhau. Vì đây là một hoạt động vừa mang tính phân tích vừa mang tính nghệ thuật nó làm cho học sinh gợi nhớ các kiến thức vừa mới học hoặc đã được học từ trước. Để thực hiện được điều như trên, bản thân tôi xác định phải luôn bám sát các nguồn tư liệu như: chuẩn kiến thức, kĩ năng; sách giáo khoa; sách giáo viên và các sách tham khảo khác. Ngoài ra còn luôn chuẩn bị một hệ thống câu hỏi và bài tập dựa trên mục tiêu của từng bài, từng chương cụ thể, giúp học sinh định hướng và nắm được kiến thức trọng tâm bài học. Thông qua đó học sinh nắm vững kiến thức cũ, lĩnh hội kiến thức mới nhanh hơn.

Nguồn: toanmath.com

Đọc Sách

Các dạng toán về góc trong hình học không gian - Trần Đình Cư
Tài liệu gồm 23 trang trình bày các dạng toán về góc, phương pháp giải và bài tập trắc nghiệm có đáp án và lời giải chi tiết. 3 dạng toán về góc trong hình học không gian gồm: + Dạng 1. Góc giữa hai mặt phẳng + Dạng 2. Góc giữa hai đường thẳng + Dạng 3. Góc giữa đường thẳng và mặt phẳng [ads] Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại AD, với AB = 3a, AD = 2a, DC = a. Hình chiếu vuông góc của S xuống mặt phẳng (ABCD) là H thuộc AB với AH = 2HB. Biết SH = 2a, cosin của góc giữa SB và AC là? + Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, góc A = 60 độ. Chân đường vuông góc hạ từ B’ xuống mặt phẳng (ABCD) trùng với giao điểm của hai đường chéo của đáy ABCD. Cho BB’ = a.Tính góc giữa cạnh bên và đáy. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, CD = 2a, AD = AB = a. Hình chiếu vuông góc của S trên mặt đáy là trung điểm H của đoạn AB. Khoảng cách từ điểm H đến mặt phẳng (SCD) bằng a√2/3. Tan của góc giữa đường thẳng BC và mặt phẳng (SCD) bằng? + Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B có AB = BC = a; SA ⊥ (ABC). Biết mặt phẳng (SBC) tạo với đáy một góc 60 độ. Cosin góc tạo bởi đường thẳng SC và mặt phẳng (ABC) là? + Cho khối chóp S.ABC có đáy là tam giác cân tại A có AB = AC = 4a, góc BAC = 120 độ. Gọi M là trung điểm của BC, N là trung điểm của AB, ΔSAM là tam giác cân tại S và thuộc mặt phẳng vuông góc với đáy. Biết SA = a√2. Góc giữa SN và mặt phẳng (ABC) là?
Các dạng toán khoảng cách trong hình học không gian - Trần Đình Cư
Tài liệu gồm 70 trang trình bày các dạng toán tính khoảng cách trong hình học không gian, phương pháp giải và bài tập trắc nghiệm có lời giải cho tiết. + DẠNG 1. KHOẢNG CÁCH TỪ 1 ĐIỂM ĐẾN ĐƯỜNG THẲNG Việc dựng hình chiếu của một điểm trên đường thẳng trong không gian, ta có thể làm theo 2 cách sau: + Dựng mặt phẳng đi qua điểm và đường thẳng đã cho. Rồi trên mặt phẳng đó qua điểm đã cho dựng đoạn vuông góc từ điểm tới đường thẳng. + Dựng một mặt phẳng đi qua điểm đã cho và vuông góc với đường thẳng, lúc đó giao điểm của đường thẳng với mặt phẳng vừa dựng chính là hình chiếu của điểm trên đường thẳng. Sau khi đã xác định được khoảng cách cần tính, ta dùng các hệ thức lượng trong tam giác, đa giác, đường tròn … để tính toán. [ads] + DẠNG 2. KHOẢNG CÁCH TỪ MỘT ĐIỂM ĐẾN MẶT PHẲNG + DẠNG 3. KHOẢNG CÁCH GIỮA HAI MẶT PHẲNG SONG SONG Việc tính khoảng cách giữa một đường thẳng và một mặt phẳng song song với nó, hoặc tính khoảng cách giữa hai mặt phẳng song song đều quy về việc tính khoảng cách từ điểm đến mặt phẳng. Cần lưu ý việc chọn điểm trên đường hoặc trên mặt sao cho việc xác định khoảng cách được đơn giản nhất. + DẠNG 4. KHOẢNG CÁCH HAI ĐƯỜNG THẲNG CHÉO NHAU
Lý thuyết khối đa diện - Trần Đình Cư
Tài liệu gồm 26 trang gồm lý thuyết, các dạng toán và bài tập trắc nghiệm có lời giải chi tiết chuyên đề khối đa diện trong chương trình Hình học 12 chương 1. DẠNG 1. KHÁI NIỆM KHỐI ĐA DIỆN I. KHÁI NIỆM VỀ HÌNH ĐA DIỆN VÀ KHỐI ĐA DIỆN 1. Khái niệm về hình đa diện Hình đa diện (gọi tắt là đa diện) (H) là hình được tạo bởi một số hữu hạn các đa giác thỏa mãn hai tính chất trên. Mỗi đa giác như thế được gọi là các mặt của đa diện. Các đỉnh các cạnh của đa giác ấy theo thứ tự được gọi là các đỉnh, cạnh của đa diện. 2. Khái niệm về khối đa diện Khối đa diện là phần không gian được giới hạn bới một hình đa diện (H), kể cả hình đa diện đó. Những điểm không thuộc khối đa diện được gọi là điểm ngoài của khối đa diện. Những điểm thuộc khối đa diện nhưng không thuộc hình đa diện giới hạn khối đa diện ấy được gọi là điểm trong của khối đa diện. Tập hợp các điểm trong được gọi là miền trong, tập hợp các điểm ngoài được gọi là miền ngoài khối đa diện. [ads] II. HAI HÌNH BẲNG NHAU 1. Phép dời hình trong không gian và sự bằng nhau giữa các khối đa diện + Trong không gian quy tắc đặt tương ứng mỗi điểm M với điểm M’ xác định duy nhất được gọi là một phép biến hình trong không gian. + Phép biến hình trong không gian được gọi là phép dời hình nếu nó bảo toàn khoảng cách giữa hai điểm tùy ý. 2. Hai hình bằng nhau: Hai hình được gọi là bằng nhau nếu có một phép dời hình biến hình này thành hình kia. DẠNG 2. KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU I. KHỐI ĐA DIỆN LỒI Khối đa diện (H) được gọi là khối đa diện lồi nếu đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Khi đó đa diện giới hạn (H) được gọi là đa diện lồi. Công thức ƠLE: Trong một đa diện lồi nếu gọi Đ là số đỉnh, C là số cạnh, M là số mặt Đ – C + M = 2. II. KHỐI ĐA DIỆN ĐỀU Khối đa diện đều là khối đa diện lồi có các tính chất sau: + Mỗi mặt của nó là một đa giác đều p cạnh + Mỗi đỉnh của nó là đỉnh chung của đúng q mặt Khối đa diện đều như vậy được gọi là khối đa diện đều loại {p;q}.
Phương pháp phần bù tính thể tích khối đa diện phức tạp - Vương Thanh Bình
Tài liệu gồm 13 trang trình bày tóm tắt lý thuyết và các kiến thức hình học liên quan, các ví dụ mẫu và một số bài tập có lời giải chi tiết phương pháp phần bù tính thể tích khối đa diện phức tạp. Khái niệm khối đa diện phức tạp: Là khối đa diện không cơ bản (không phải chóp tam giác, chóp tứ giác, hình lăng trụ, hình hộp, hình lập phương … ) hoặc cơ bản nhưng khó tính chiều cao và diện tích đáy. Ý tưởng: Ta sẽ xây dựng khối đa diện phức tạp (H) nằm trong khối chóp cơ bản (A). Ví dụ dụ khối chóp (A) gồm khối đa diện phức tạp (H) và khối chóp cơ bản (B) khi đó: VH = VA – VB [ads] Các dạng thường gặp + Dạng 1: (Cơ bản) A = H + B ⇒ VH = VA – VB + Dạng 2: (Nâng cao) A = H + B + C ⇒ VH = VA – VB – VC + Dạng 3: (Rất khó) A = H + B + C + D ⇒ VH = VA – VB – VC – VD Kiến thức liên quan 1. Định lý Talet: Cho tam giác ABC, đường thẳng d song song với BC đồng thời cắt các cạnh AB, AC hoặc các đường kéo dài của 2 cạnh này tại M, N thì ta có tỉ lệ: AM/AN = AB/AC 2. Định lý 3 đường giao tuyến: Cho 3 mặt phẳng (P), (Q), (R) giao nhau theo 3 giao tuyến d1, d2, d3 thì 3 giao tuyến này một là đôi một song song hai là đồng quy. Bài tập vận dụng có lời giải chi tiết