Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 2 năm 2019 - 2020 trường Thạch Thành 3 - Thanh Hóa

Nằm trong kế hoạch ôn tập, rèn luyện kiến thức đối với học sinh khối 12, hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020, vừa qua, tổ Toán trường THPT Thạch Thành số 3, tỉnh Thanh Hóa tiếp tục tổ chức kỳ thi khảo sát chất lượng lớp 12 môn Toán lần thi thứ hai. Đề khảo sát Toán 12 lần 2 năm 2019 – 2020 trường Thạch Thành 3 – Thanh Hóa mã đề 001, đề gồm có 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2019 – 2020 trường Thạch Thành 3 – Thanh Hóa : + Để làm một sản phẩm lịch Canh Tý 2020 để bàn như hình vẽ cần dùng 50cm2 giấy cho mỗi mặt (ứng với một tháng trong năm). Biết đơn giá giấy trên thị trường là 200.000 đồng/m2. Hỏi chi phí giấy cần dùng để làm một sản phẩm lịch trên bằng? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E là điểm đối xứng với C qua B và F là điểm thỏa mãn: SF = -2BF. Mặt phẳng (DEF) chia khối chóp S.ABCD thành 2 khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V1, khối đa diện còn lại có thể tích V2 (tham khảo hình vẽ). Tính tỉ số V1/V2. [ads] + Nhân dịp đi du Xuân Canh Tý, ba bạn Trang, Hoàng, Tân rủ nhau rút quẻ xem vận mệnh. Khi đó trong hộp chỉ còn các quẻ có số thứ tự từ 5 đến 15 (luôn có ít nhất ba quẻ cùng ghi một số). Mỗi bạn rút ngẫu nhiên một quẻ và yêu cầu bạn Linh tính xác suất để tổng các số ghi trên ba quẻ là một số chia hết cho 3. Kết quả đúng là? + Tìm tất cả các giá trị của tham số m để đường thẳng đi qua cực đai, cực tiểu của đồ thị hàm số y = x^3 – 3mx^2 + 2 cắt đường tròn (C) tâm I(1;1), bán kính bằng 1 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất? + Bà chủ khách sạn trên đèo Mã Pì Lèng muốn trang trí một góc nhỏ trên ban công sân thượng cho đẹp nên quyết định thuê nhân công xây một bức tường gạch với xi măng (như hình vẽ), biết hàng dưới cùng có 500 viên, mỗi hàng tiếp theo đều có ít hơn hàng trước 1 viên và hàng trên cùng có 1 viên. Hỏi số gạch cần dùng để hoàn thành bức tường trên là bao nhiêu viên?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lần 1 Toán 12 năm 2020 - 2021 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
Chủ Nhật ngày 25 tháng 10 năm 2020, trường THPT Nguyễn Viết Xuân, huyện Vĩnh Tường, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán lớp 12 giai đoạn giữa học kỳ 1 (HK1) năm học 2020 – 2021. Đề KSCL lần 1 Toán 12 năm 2020 – 2021 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc mã đề 924 gồm 08 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút. Trích dẫn đề KSCL lần 1 Toán 12 năm 2020 – 2021 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc : + Một cơ sở khoan giếng có đơn giá như sau: giá của mét khoan đầu tiên là 50000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét khoan sau tăng thêm 7% so với giá của mét khoan ngay trước đó. Tính số tiền mà chủ nhà phải trả cho cơ sở khoan giếng để khoan được 50 m giếng gần bằng số nào sau đây? + Ông An mua một chiếc vali mới để đi du lịch, chiếc va li đó có chức năng cài đặt mật khẩu là các chữ số để mở khóa. Có 3 ô để cài đặt mật khẩu mỗi ô là một chữ số. Ông An muốn cài đặt để tổng các chữ số trong 3 ô đó bằng 5. Hỏi ông có bao nhiêu cách để cài đặt mật khẩu như vậy? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm AD và BC. Giao tuyến của hai mặt phẳng (SMN) và (SAC) là: A. SG (G là trung điểm AB). B. SD. C. SF (F là trung điểm CD). D. SO (O là tâm hình bình hành ABCD).
Đề KSCL Toán 12 đầu năm học 2020 - 2021 trường Thuận Thành 1 - Bắc Ninh
Chiều Chủ Nhật ngày 04 tháng 10 năm 2020, trường THPT Thuận Thành 1, huyện Thuận Thành, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng đầu năm học môn Toán 12 năm học 2020 – 2021. Đề KSCL Toán 12 đầu năm học 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh gồm 05 trang với 50 câu hỏi và bài tập dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, nội dung đề thi tập trung vào các chương: ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (Giải tích 12 chương 1), khối đa diện và thể tích của chúng (Hình học 12 chương 1) và các nội dung quan trọng khác thuộc chương trình Toán lớp 11; đề thi có đáp án mã đề 132. Trích dẫn đề KSCL Toán 12 đầu năm học 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh : + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là: A. Tam giác MNE. B. Tứ giác MNEF với F là điểm bất kì trên cạnh BD. C. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC. D. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC. + Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá bán này thì cửa hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm là 50 quả. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng. + Hai người ngang tài ngang sức tranh chức vô địch của cuộc thi cờ tướng. Người giành chiến thắng là người đầu tiên thắng được 5 ván cờ. Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván, tính xác suất để người chơi thứ nhất giành chiến thắng?
Đề KSCL đầu năm Toán 12 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Thứ Sáu ngày 09 tháng 10 năm 2020, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng đầu năm môn Toán lớp 12 năm học 2020 – 2021. Đề KSCL đầu năm Toán 12 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh với hai mã đề 101 và 102, đề gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút, nội dung đề thi tập trung vào các phần: ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (Giải tích 12 chương 1), khối đa diện và thể tích của chúng (Hình học 12 chương 1) và các kiến thức trọng tâm thuộc chương trình Toán 11; đề thi có đáp án mã đề 101, 102, 103, 104. Trích dẫn đề KSCL đầu năm Toán 12 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Trong không gian, khẳng định nào sau đây sai? A. Cho trước bốn điểm phân biệt, luôn có duy nhất một mặt phẳng chứa cả bốn điểm đó. B. Cho trước hai điểm phân biệt, luôn có duy nhất một đường thẳng đi qua hai điểm đó. C. Cho trước hai đường thẳng cắt nhau, luôn có duy nhất một mặt phẳng chứa cả hai đường thẳng đó. D. Cho trước hai đường thẳng song song, luôn có duy nhất một mặt phẳng chứa cả hai đường thẳng đó. + Xét các khẳng định sau đây: (1) Chiều cao của một hình chóp luôn bằng độ dài của cạnh bên nhỏ nhất của hình chóp đó. (2) Chiều cao của một hình chóp luôn bằng độ dài của cạnh bên lớn nhất của hình chóp đó. (3) Chiều cao của một hình lăng trụ bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đáy của hình lăng trụ đó. (4) Chiều cao của một hình lăng trụ không lớn hơn độ dài cạnh bên của hình lăng trụ đó. Số khẳng định đúng là? + Cho hình chóp cụt đều, có hai đáy là các hình lục giác đều cạnh bằng 2 và cạnh bằng 4. Chiều cao của hình chóp cụt bằng 2. Tính diện tích toàn phần của hình chóp cụt đó.
Đề KSCL Toán 12 năm 2019 - 2020 trường THPT chuyên Lê Hồng Phong - Nam Định
Nhằm giúp học sinh khối 12 rèn luyện, chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán, thứ Năm ngày 23 tháng 07 năm 2020, trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020. Đề KSCL Toán 12 năm 2019 – 2020 trường THPT chuyên Lê Hồng Phong – Nam Định mã đề 926 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán 12 năm 2019 – 2020 trường THPT chuyên Lê Hồng Phong – Nam Định : + Cho tập hợp gồm 30 số nguyên dương đầu tiên S = {1; 2; 3; …; 30}. Lấy ngẫu nhiên cùng một lúc ba số khác nhau thuộc S. Gọi P là xác suất để lấy được ba số có tích chia hết cho 4. Hỏi P thuộc khoảng nào sau đây? [ads] + Cho hình hộp ABCD.A’B’C’D’ có diện tích mỗi đáy bằng 4 và khoảng cách giữa hai mặt phẳng chứa đáy bằng 2. Gọi M và N lần lượt là trung điểm của các cạnh AB và AD. Mặt phẳng (a) chứa đường thẳng MN và đi qua tâm của hình hộp cắt các cạnh D’C’ và C’B’ lần lượt tại P và Q. Tính thể tích của khối chóp B’.MNPQ. + Trong mặt phẳng phức, tập hợp tất cả các điểm biểu diễn số phức z thỏa mãn |z + 3| = |z¯ – i| là một đường thẳng l. Tính khoảng cách từ gốc tọa độ đến l.