Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Thủy Nguyên - Hải Phòng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thủy Nguyên, thành phố Hải Phòng; đề thi gồm 02 trang với 06 bài toán hình thức tự luận, thời gian làm bài 120 phút. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Thủy Nguyên – Hải Phòng : + Giá 01 quyển vở là 8 000 (đồng), 01 quyển sách 59 000 (đồng). Nam muốn mua 01 quyển sách và một số quyển vở. Gọi x là số vở Nam mua và y (đồng) là số tiền phải trả (bao gồm tiền mua vở và 1 quyển sách) (x thuộc N*). a. Hãy biểu diễn y theo x. b. Nếu bạn Nam có 119 000 (đồng) để mua 01 quyển sách và vở thì bạn Nam có thể mua được tối đa bao nhiêu quyển vở? + Một vườn trường hình chữ nhật trước đây có chu vi 120m. Nhà trường đã mở rộng chiều dài thêm 5m và chiều rộng thêm 3m, do đó diện tích vườn trường đã tăng thêm 245m2. Tính chiều dài và chiều rộng của vườn lúc đầu. + Một bồn đựng nước có dạng hình hộp chữ nhật có các kích thước cho trên hình. a) Tính diện tích bề mặt của bồn (không tính nắp). b) Một vòi bơm với công suất 120 lít/phút để bơm một lượng nước vào bồn lên độ cao cách nắp bồn là 1,5m thì phải mất bao lâu (bồn không chứa nước)?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2019 - 2020 trường Phạm Hồng Thái - Hà Nội
Đề khảo sát Toán 9 lần 1 năm học 2019 – 2020 trường THCS Phạm Hồng Thái – Hà Nội gồm có 05 bài toán dạng tự luận, thời gian làm bài 60 phút, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020, nhằm giúp giáo viên và nhà trường kiểm tra định kỳ chất lượng học sinh. Trích dẫn đề khảo sát Toán 9 lần 1 năm 2019 – 2020 trường Phạm Hồng Thái – Hà Nội : + Cho ∆ABC vuông ở A, vẽ đường cao AH. Biết BC = 25cm và AB = 15cm. a) Tính BH, AH và góc ABC (số đo góc làm tròn đến độ). b) Trên cạnh AC lấy điểm D bất kì (D khác A và C). Gọi E là hình chiếu của A trên BD. Chứng minh: BH.BC = BE.BD. c) Chứng minh: góc ABD = góc AHE. + Thực hiện phép tính. + Giải các phương trình sau.
Đề khảo sát Toán 9 tháng 9 năm 2019 - 2020 trường Dịch Vọng Hậu - Hà Nội
Ngày …/09/2019, trường THCS Dịch Vọng Hậu, Cầu Giấy, Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán 9 tháng 9 năm học 2019 – 2020. Đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội đề số 01 gồm 04 bài toán dạng tự luận, đề thi gồm có 01 trang, học sinh làm bài trong khoảng thời gian 90 phút. [ads] Trích dẫn đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội : + Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD. Chú ý: Số đo góc làm tròn đến độ.
Đề kiểm tra Toán 9 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 9, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 9 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho đường tròn (O), đường kính AB = 2R. Gọi M là trung điểm của OB, đường thẳng d luôn đi qua M cắt (O) tại C và D. Gọi H là trung điểm của CD. a) Chứng minh H thuộc đường tròn đường kính OM. b) Giả sử CD = R√3, tính độ dài OH theo R và số đo góc COD. c) Gọi I là trực tâm của tam giác ACD. Chứng minh H là trung điểm của BI. d) Cho đường thẳng d thay đổi và luôn đi qua M. Chứng minh điểm I luôn nằm trên một đường tròn cố định. + Cho x, y, z là các số thực không âm thỏa mãn x + y + z = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức N = √(x + y) + √(y + z) + √(z + x).