Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT thành phố Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi văn hóa cấp thành phố môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Bắc Giang; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 08 tháng 04 năm 2023. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT thành phố Bắc Giang : + Đa thức Q x nếu chia cho x − 1 được số dư bằng 4, nếu chia cho x − 3 được số dư bằng 14. Tìm đa thức dư của phép chia Q x cho (x x 1 3). Chứng minh rằng trong 14 số tự nhiên bất kỳ có ba chữ số, luôn tồn tại hai số sao cho khi ghép chúng lại cạnh nhau để được một số có sáu chữ số chia hết cho 13. + Cho tam giác ABC vuông tại A AB AC phân giác trong AD (D BC), gọi M là trung điểm của đoạn thẳng BC, trên tia đối của tia DA lấy điểm K sao cho 0 KBC 45, đường thẳng qua A vuông góc với AD cắt KM tại N. a) Chứng minh rằng ∆BDK ∆ADC và tam giác KBC vuông cân. b) Phân giác của ABC cắt AD tại I. Gọi E là giao điểm của AC và MN. Chứng minh rằng: 0 ENC 45 và 2 KI KM KN. + Cho tam giác ABC có trung tuyến AD D BC. Trên đoạn thẳng AD lấy điểm K sao cho 3 AK KD. Gọi E là giao điểm của đường thẳng BK và AC. Tính tỉ số diện tích tam giác ABE và diện tích tam giác BCE.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Tam Đảo Vĩnh Phúc
Nội dung Đề thi HSG lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Tam Đảo Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2014-2015 phòng GD&ĐT Tam Đảo- Vĩnh Phúc Đề thi HSG Toán lớp 8 năm 2014-2015 phòng GD&ĐT Tam Đảo- Vĩnh Phúc Sytu xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi HSG Toán lớp 8 năm 2014-2015 từ phòng GD&ĐT Tam Đảo- Vĩnh Phúc. Đề thi bao gồm lời giải chi tiết và hướng dẫn chấm điểm các bài toán. Đề thi bắt đầu với câu hỏi về hình vuông ABCD, trong đó AC cắt BD tại O. Đề bài yêu cầu chứng minh một số tính chất của tam giác OEM khi M là điểm trên cạnh BC và AM cắt đường thẳng CD tại N. Tiếp theo là bài toán về biểu thức đại số và tổ hợp số học, một bài toán khác yêu cầu chứng minh rằng trong ba số x, y, z, tồn tại hai số đối nhau khi thỏa mãn điều kiện nhất định. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức Toán lớp 8 một cách linh hoạt và chính xác để giải quyết các bài toán đa dạng. Hy vọng đề thi sẽ là cơ hội tốt để các em rèn luyện và củng cố kiến thức của mình. Chúc quý thầy cô và các em học sinh thành công!
Đề thi HSG cấp huyện lớp 8 môn Toán năm 2012 2013 phòng GD ĐT Việt Yên Bắc Giang
Nội dung Đề thi HSG cấp huyện lớp 8 môn Toán năm 2012 2013 phòng GD ĐT Việt Yên Bắc Giang Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 8 năm 2012 - 2013 phòng GD&ĐT Việt Yên Bắc Giang Đề thi HSG cấp huyện Toán lớp 8 năm 2012 - 2013 phòng GD&ĐT Việt Yên Bắc Giang Xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi HSG cấp huyện môn Toán năm 2012 - 2013 từ phòng GD&ĐT Việt Yên, Bắc Giang. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi từ đề thi: 1. Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. Chứng minh rằng tứ giác AEMD là hình chữ nhật. 2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. 3. Chứng minh rằng: 1/AD^2 = 1/AM^2 + 1/AN^2. 4. Tìm đa thức f(x) biết rằng: f(x) chia cho x - 2 dư 10, f(x) chia cho x - 2 dư 24, f(x) chia cho x^2 - 4 được thương là -5x và còn dư. 5. Phân tích đa thức x^4 + 2013x^2 + 2012x + 2013 thành nhân tử.