Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 10 thi TN THPT 2024 lần 1 trường THPT Ba Đình - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng môn Toán 10 ôn thi tốt nghiệp Trung học Phổ thông năm học 2023 – 2024 lần 1 trường THPT Ba Đình, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL Toán 10 thi TN THPT 2024 lần 1 trường THPT Ba Đình – Thanh Hóa : + Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Văn, 11 học sinh giỏi Anh, trong đó có 6 học sinh giỏi cả Toán và Văn, 5 học sinh giỏi cả Anh và Văn, 4 học sinh giỏi cả Toán và Anh, 3 học sinh giỏi cả ba môn Toán, Văn và Anh. Tính số học sinh giỏi đúng một trong hai môn Toán hoặc Văn. + Người ta dự định dùng hai loại nguyên liệu để sản xuất ít nhất 140kg chất A và 18kg chất B. Với mỗi tấn nguyên liệu loại I, người ta chiết xuất được 20 kg chất A và 1,2 kg chất B. Với mỗi tấn nguyên liệu loại II, người ta chiết xuất được10kg chất A và 3 kg chất B. Giá mỗi tấn nguyên liệu loại I là 9 triệu đồng và loại II là 7 triệu đồng. Tính chi phí ít nhất dùng để mua nguyên liệu mà vẫn đạt mục tiêu đề ra. Biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp tối đa 9 tấn nguyên liệu loại I và 8 tấn nguyên liệu loại II. + Để đo chiều cao của một cây lớn, một bạn từ vị trí H trên ban công của một toà nhà, có độ cao so với mặt đất 12m, bạn đó dùng dụng cụ đo góc quan sát được cây AB dưới góc AHB = 50. Biết khoảng cách từ chân tường nhà đến gốc cây là KA m 50, tính chiều cao của cây (làm tròn đến hàng đơn vị).

Nguồn: toanmath.com

Đọc Sách

Đề thi khảo sát lần 3 Toán 10 năm 2018 - 2019 trường Nguyễn Đăng Đạo - Bắc Ninh
Đề thi khảo sát lần 3 Toán 10 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh có mã đề 110 gồm 04 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Trích dẫn đề thi khảo sát lần 3 Toán 10 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng Oxy, cho hình chữ nhật ABCD với AD = 2AB. Gọi M, N lần lượt là trung điểm của AD, BC. Điểm K(5;-1) đối xứng với M qua N. Phương trình đường thẳng chứa cạnh AC là: 2x + y – 3 = 0. Biết A(a;b) (b > 0). Tính tổng a + b. [ads] + Cho hai hàm số f(x) = |x + 2| – |x – 2|, g(x) = -|x|. Khẳng định nào sau đây đúng? A. f(x) là hàm số chẵn, g(x) là hàm số lẻ. B. f(x) là hàm số lẻ, g(x) là hàm số chẵn. C. f(x) là hàm số lẻ, g(x) là hàm số lẻ. D. f(x) là hàm số chẵn, g(x) là hàm số chẵn. + Cho hàm số f(x) = x^2 – 2(m + 1/m)x + m. Đặt a, b lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của f(x) trên đoạn [-1;1]. Gọi S là tập hợp tất cả các giá trị của tham số m sao cho: b – a = 8. Tính tổng của các phần tử thuộc S.
Đề khảo sát Toán 10 lần 3 năm 2018 - 2019 trường Lương Tài 2 - Bắc Ninh
Ngày 17 tháng 03 năm 2019, trường THPT Lương Tài số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra khảo sát chất lượng lần 3 môn Toán 10 năm học 2018 – 2019. Đề khảo sát Toán 10 lần 3 năm 2018 – 2019 trường Lương Tài 2 – Bắc Ninh có mã đề 132 gồm 04 trang với 50 câu hỏi và bài tập dạng trắc nghiệm, thời gian học sinh làm bài là 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 10 lần 3 năm 2018 – 2019 trường Lương Tài 2 – Bắc Ninh : + Cho phương trình x^2 – x – 1 = 0? Chọn khẳng định ĐÚNG? A. Phương trình có 2 nghiệm dương phân biệt. B. Phương trình vô nghiệm. C. Phương trình có 2 nghiệm trái dấu. D. Phương trình có nghiệm kép. [ads] + Cho tam giác ABC có G là trọng tâm, I, J, K lần lượt là trung điểm GA, GB, GC. Tìm tập hợp điểm M thỏa mãn: |4MA + MB + MC| = 2|AB – AC|? A. Đường tròn tâm G, bán kính BC. B. Đường tròn tâm J, bán kính 2/3BC. C. Đường tròn tâm K, bán kính 1/6BC. D. Đường tròn tâm I, bán kính 1/3BC. + Cho bất phương trình √(2x – 4) ≤ 2. Chọn khẳng định đúng? A. Tập nghiệm của bất phương trình là: (-∞; 4). B. Tập nghiệm của bất phương trình là: (-∞; 4]. C. Tập nghiệm của bất phương trình là: (2; 4]. D. Tập nghiệm của bất phương trình là: [2; 4].
Đề thi KSCL Toán 10 lần 2 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc
Vừa qua, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng Toán 10 lần thứ hai năm học 2018 – 2019, kỳ thi nhằm giúp nhà trường và giáo viên nắm rõ chất lượng học tập môn Toán của học sinh khối 10 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Đề thi KSCL Toán 10 lần 2 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc mã đề 132 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, đề thi có đáp án. [ads] Trích dẫn đề thi KSCL Toán 10 lần 2 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Để sản xuất 100 sản phẩm thì Mai và Lan cùng làm hết 72 giờ, Lan và Chi cùng làm hết 63 giờ, còn Mai và Chi cùng làm hết 60 giờ. Trong buổi tổng kết sắp tới trưởng cơ sở sản xuất muốn thưởng cho một người sản xuất năng suất nhất. Hỏi ai sẽ được thưởng? + Mệnh đề nào sau đây là mệnh đề sai ? A. Điểm G là trọng tâm của tam giác ABC thì GA + GB + GC = 0. B. Tứ giác ABCD là hình bình hành thì AC = AB + AD. C. Với ba điểm bất kì O, A, B thì AB = OA – OB. D. Gọi I là trung điểm của đoạn thẳng AB với điểm M bất kì thì 2MI = MA + MB. + Cho hai hàm số f(x) = -x^4 + 8x^2 + 2019 và g(x) = √(1 – x^2). Khẳng định nào sau đây là đúng? A. Hàm số f(x) và g(x) không chẵn không lẻ. B. Hàm số f(x) chẵn, hàm số g(x) không chẵn không lẻ. C. Hàm số f(x) chẵn, hàm số g(x) lẻ. D. Hàm số f(x) và g(x) đều chẵn.
Đề khảo sát Toán 10 lần 2 năm 2018 2019 trường THPT Lê Xoay Vĩnh Phúc
Tuần qua, trường THPT Lê Xoay, tỉnh Vĩnh Phúc đã tiến hành tổ chức kỳ thi khảo sát chất lượng môn Toán 10 lần 2 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Đề khảo sát Toán 10 lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc có mã đề 125, đề gồm 06 trang được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, kỳ thi nhằm đánh giá chất lượng môn Toán thường xuyên đối với học sinh khối 10 theo từng giai đoạn để thúc đẩy nâng cao chất lượng học tập. Trích dẫn đề khảo sát Toán 10 lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc : + Cho tam giác ABC không vuông với độ dài các đường cao kẻ từ đỉnh B, C lần lượt là hb, hc, độ dài đường trung tuyến kẻ từ đỉnh A là ma, biết hb = 8, hc = 6, ma = 5. Tính cos A. [ads] + Cho ba số dương a, b, c có tổng bằng 1. Giá trị lớn nhất của biểu thức P = a + √ab + (abc)^1/3 là? + Cho tam giác ABC có BC = a, CA = b, AB = c. Mệnh đề nào sau đây là đúng? A. Nếu b^2 + c^2 – a^2 < 0 thì góc A nhọn. B. Nếu b^2 + c^2 – a^2 < 0 thì góc A vuông. C. Nếu b^2 + c^2 – a^2 > 0 thì góc A tù. D. Nếu b^2 + c^2 – a^2 > 0 thì góc A nhọn.