Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 2020 trường THCS Bế Văn Đàn Hà Nội

Nội dung Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 2020 trường THCS Bế Văn Đàn Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 2020 trường THCS Bế Văn Đàn Hà Nội Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 2020 trường THCS Bế Văn Đàn Hà Nội Trong kỳ kiểm tra tập trung môn Toán hàng tháng tại trường THCS Bế Văn Đàn, nhằm đánh giá chất lượng học tập của học sinh lớp 9, đề kiểm tra tháng 9 năm học 2019 – 2020 đã được tổ chức. Đề bao gồm 05 bài toán dạng tự luận, thời gian làm bài là 90 phút. Trong đề kiểm tra của trường THCS Bế Văn Đàn – Hà Nội, có một bài toán liên quan đến Vịnh Hạ Long - một trong những kì quan thiên nhiên nổi tiếng thế giới. Bài toán giải quyết vấn đề vận tốc của hai xe ô tô đi hướng ngược chiều đến khi gặp nhau, với thông tin về vận tốc của mỗi xe và khoảng cách giữa Hà Nội và Vịnh Hạ Long. Bài toán khác trong đề kiểm tra liên quan đến bể bơi tiêu chuẩn, yêu cầu học sinh tính thể tích nước trong bể dựa trên chiều dài, chiều rộng, và chiều cao của bể. Đề còn đưa ra một bài toán về chứng minh bất đẳng thức cho các số thực dương a, b, c. Đề kiểm tra lớp 9 môn Toán tháng 9 năm 2019 – 2020 tại trường THCS Bế Văn Đàn đặt ra các bài toán thú vị và mang tính ứng dụng cao, giúp học sinh rèn luyện kỹ năng giải quyet bài toán và logic, phát triển tư duy toán học.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra Toán 9 đợt 1 năm 2021 - 2022 phòng GDĐT Quảng Trạch - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 đợt 1 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Quảng Trạch, tỉnh Quảng Bình. Trích dẫn đề kiểm tra Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Quảng Trạch – Quảng Bình : + Cho phương trình: x2 + mx + m – 1 = 0 (1) (m là tham số). a) Giải phương trình (1) tại m = 7. b) Chứng tỏ rằng phương trình (1) luôn có nghiệm với mọi giá trị của m. c) Tìm m sao cho phương trình (1) có hai nghiệm x1, x2 là hai số đối nhau. + Cho các số thực dương a, b, c thỏa mãn: (a + 2)(b + 2) + (b + 2)(c + 2) + (c + 2)(a + 2) > (a + 2)(b + 2)(c + 2). Chứng minh rằng: abc < 1. + Cho đường tròn (O) đường kính MN, dây CD vuông góc với MN tại H. Trên đoạn CH lấy điểm I (không trùng với C và H), MI cắt đường tròn (O) tại điểm thứ hai là A. a) Chứng minh tứ giác AIHN nội tiếp trong một đường tròn b) Chứng minh ZMCD = ZMAC c) Chứng minh MC2 = MI.MA d) Gọi P là giao điểm của MA và CN, Q là giao điểm của AD và MN. Chứng minh P là tâm của đường tròn nội tiếp tam giác ACQ.
Đề khảo sát Toán 9 tháng 02 năm 2022 trường THCS Thanh Xuân Trung - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng định kì môn Toán 9 tháng 02 năm học 2021 – 2022 trường THCS Thanh Xuân Trung, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 26 tháng 02 năm 2022. Trích dẫn đề khảo sát Toán 9 tháng 02 năm 2022 trường THCS Thanh Xuân Trung – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai tổ của một nhà máy sản xuất khẩu trang lúc đầu trong một ngày sản xuất được 1500 chiếc khẩu trang. Để đáp ứng nhu cầu khẩu trang trong mùa dịch cúm do chủng mới virut Corona gây nên mỗi ngày tổ một vượt mức 75%, tổ hai vượt mức 68%, khi đó cả hai tổ sản xuất được 2583 chiếc khẩu trang. Hỏi ban đầu trong một ngày mỗi tổ sản xuất được bao nhiêu chiếc khẩu trang? + Để đo khoảng cách giữa hai địa điểm A và B ở hai bờ của một con sông, người ta đặt máy đo ở vị trí C sao cho AC vuông góc AB. Biết AC = 20m và ACB = 75° (hình bên). Tính khoảng cách AB (làm tròn đến mét). + Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC. 1) Chứng minh: Tứ giác AMON và tứ giác AOHN nội tiếp. 2) a) MN cắt AO tại điểm I. Chứng minh: Al. AO = AM2. b) Tia MH cắt đường tròn (O) tại điểm thứ hai D. Giả sử 3 điểm A, B, C cố định, đường tròn (O) di động. Chứng minh: ND // AC và đường thẳng MN luôn đi qua một điểm cố định.
Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng Toán 9 năm học 2021 – 2022 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội, đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 12 tháng 02 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS Lê Ngọc Hân – Hà Nội : + Để chuẩn bị cho công tác phòng chống dịch COVID – 19 khi học sinh quay trở lại trường học trực tiếp, nhà trường dự định mua khẩu trang và dung dịch sát khuẩn với tổng số tiền là 8 triệu đồng. Tuy nhiên, vì cửa hàng có chương trình ưu đãi dành cho trường học, giá khẩu trang giảm 10%, giá dung dịch sát khuẩn giảm 15% nên nhà trường chỉ phải trả 7 triệu đồng. Hỏi số tiền ban đầu dự định để mua khẩu trang là bao nhiêu? + Trong mặt phẳng Oxy, cho đường thẳng (d): y m 1 x 2m m 1 a) Với m = 2, tìm giao điểm của (d) với đường thẳng (d1): y 3x 2 b) Với giá trị nào của m để (d) song song với đường thẳng (d2) y x c) Đường thẳng (d) cắt trục Ox tại điểm B, cắt trục Oy tại điểm A. Tìm m sao cho diện tích tam giác OAB bằng 1 (đvdt). + Cho hai biểu thức: 2 4 2 x x A x và 2 4 2 2 4 x xx B với x x 0 4 1) Tính giá trị của biểu thức A khi x = 9. 2) Chứng minh: 2 x B x. 3) Đặt P AB. So sánh P và 2. 4) Tìm giá trị nguyên dương nhỏ nhất của P.
Đề khảo sát Toán 9 tháng 01 năm 2022 trường M.V. Lômônôxốp - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát Toán 9 tháng 01 năm 2022 trường THCS & THPT M.V. Lômônôxốp – Hà Nội.