Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán tuyển sinh năm 2019 2020 trường Hồng Hà Hà Nội

Nội dung Đề thi thử Toán tuyển sinh năm 2019 2020 trường Hồng Hà Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán tuyển sinh năm 2019 2020 trường Hồng Hà Hà Nội Đề thi thử Toán tuyển sinh năm 2019 2020 trường Hồng Hà Hà Nội Vào ngày Thứ Tư, 03 tháng 04 năm 2019, trường THPT Hồng Hà - Hà Nội đã tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT năm học 2019 - 2020 môn Toán dành cho học sinh lớp 9 tại thủ đô Hà Nội. Đề thi được biên soạn dựa trên cấu trúc chung của các đề thi Toán tuyển sinh vào lớp 10 của sở GD&ĐT Hà Nội trong những năm gần đây. Đề thi thử Toán tuyển sinh lớp 10 năm 2019 - 2020 trường Hồng Hà - Hà Nội có mã đề 006, được biên soạn theo hình thức tự luận với 05 bài toán. Học sinh đã có 120 phút để làm bài (không tính thời gian giám thị coi thi và phát đề). Một số câu hỏi trong đề thi gồm: Chứng minh đường thẳng d1 và d2 luôn cắt nhau tại một điểm M và tìm tọa độ của điểm M. Tìm giá trị của m để giao điểm M của d1 và d2 nằm trên parabol y = 9x^2. Giải bài toán về sản xuất quần áo của một phân xưởng may. Chứng minh và tính toán các tỉ lệ trong một trò chơi vòng quay. Đề thi được thiết kế để thử nghiệm kiến thức và kỹ năng của học sinh, từ khả năng giải quyết vấn đề cho đến việc rút ra kết luận và chứng minh các phát biểu toán học.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường chuyên Trần Hưng Đạo - Bình Thuận
Chủ Nhật ngày 05 tháng 07 năm 2020, trường THPT chuyên Trần Hưng Đạo, thành phố Phan Thiết, tỉnh Bình Thuận tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường chuyên Trần Hưng Đạo – Bình Thuận gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường chuyên Trần Hưng Đạo – Bình Thuận : + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi K là một điểm tùy ý trên cạnh BC với K khác B, K khác C. Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK. Chứng minh rằng M, H, N thẳng hàng. [ads] + Cho 20 điểm phân biệt trong mặt phẳng. Chứng minh rằng tồn tại đường tròn có đúng 12 điểm đã cho bên trong và có đúng 8 điểm đã cho bên ngoài. + Tìm tất cả các số nguyên tố p sao cho 2p + 1 là lập phương của một số nguyên dương.
Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (Đề chung)
Chiều Chủ Nhật ngày 12 tháng 07 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (Đề chung) là đề thi vòng 1, được dành cho tất cả các thí sinh tham dự kỳ thi, đề gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 120 phút, đề thi được nhận định là khó. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (Đề chung) : + Cho tam giác ABC có BC là góc nhỏ nhất trong ba góc của tam giác và nội tiếp đường tròn (O). Điểm D thuộc cạnh BC sao cho AD là phân giác BAC. Lấy các điểm M, N thuộc (O) sao cho các đường thẳng CM và BN cùng song song với đường thẳng AD. 1) Chứng minh rằng AM = AN. 2) Gọi giao điểm của đường thẳng MN với các đường thẳng AC, AB lần lượt là E, F. Chứng minh rằng bốn điểm B, C, E, F cùng thuộc một đường tròn. 3) Gọi P, Q theo thứ tự là trung điểm của các đoạn thẳng AM, AN. Chứng minh rằng các đường thẳng EQ, FP và AD đồng quy. [ads] + Tìm x và y nguyên dương thỏa mãn. + Với a và b là những số thực dương thỏa mãn. Chứng minh rằng.
Đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GDĐT Nam Định (Đề chuyên)
Chiều thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2020 – 2021. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề chuyên) dành cho học sinh thi vào các lớp chuyên Toán; đề gồm 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề chuyên) : + Cho tam giác nhọn ABC có AB < AC nội tiếp đường tròn (O). Một đường tròn tiếp xúc với các cạnh AB, AC tại M, N và có tâm I thuộc cạnh BC. Kẻ đường cao AH của tam giác ABC. a) Chứng minh các điểm A, M, H, I, N cùng thuộc một đường tròn và HA là tia phân giác của góc ΜΗΝ. b) Đường thẳng đi qua I và vuông góc với BC cắt MN tại K. Chứng minh AK đi qua trung điểm D của BC. c) Tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại N. Chứng minh BAS = CAD. + Cho các số thực không âm a, b, c thỏa mãn điều kiện a + b + c = 1. Chứng minh a^3 + b^3 + c^3 ≤ 1/8 + a^4 + b^4 + c^4. [ads] + Ban đầu có 2020 viên sỏi để trong 1 chiếc túi. Có thể thực hiện công việc như sau: Bước 1: Bỏ đi 1 viên sỏi và chia túi này thành 2 túi mới. Bước 2: Chọn 1 trong 2 túi này sao cho túi đó có ít nhất 3 viên sỏi, bỏ đi 1 viên từ túi này và chia túi đó thành 2 túi mới, khi đó có 3 túi. Bước 3: Chọn 1 trong 3 túi này sao cho túi đó có ít nhất 3 viên sỏi, bỏ đi 1 viên từ túi này và chia túi đó thành 2 túi mới, khi đó có 4 túi. Tiếp tục quá trình trên. Hỏi sau một số bước có thể tạo ra trường hợp mà mỗi túi có đúng 2 viên sỏi hay không?
Đề Toán tuyển sinh lớp 10 chuyên năm 2020 2021 sở GDĐT Nam Định (Đề 2)
Sáng thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2020 – 2021 môn thi Toán. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 2) là đề chung được sử dụng cho các thí sinh thi vào các lớp chuyên xã hội, đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 2) : + Tính bán kính đường tròn ngoại tiếp tam giác đều ABC, biết độ dài cạnh của tam giác là √3 cm. + Từ điểm A nằm ngoài đường tròn (O) kẻ các tiếp tuyến AB, AC đến đường tròn (B và C là các tiếp điểm). Đoạn thẳng AO cắt BC và đường tròn (O) lần lượt tại M và I. 1) Chứng minh rằng ABOC là tứ giác nội tiếp và I là tâm đường tròn nội tiếp tam giác ABC. 2) Gọi D là điểm thuộc cung lớn BC của đường tròn (O) (với DB < DC) và K là giao điểm thứ hai của tia DM với đường tròn (O). Chứng minh rằng MD.MK = MA.MO. [ads] 3) Gọi E và F lần lượt là hình chiếu vuông góc của A trên các đường thẳng DB và DC. Chứng minh AF song song với ME. + Xét a, b, c là các số dương thỏa mãn 2a + 2b + 2c + ab + bc + ca = 24. Tìm giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + c^2.