Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Lâm Đồng

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022-2023 sở GD&ĐT Lâm Đồng Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022-2023 sở GD&ĐT Lâm Đồng Chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Lâm Đồng. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 03 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 9 năm 2022-2023 sở GD&ĐT Lâm Đồng: + Vấn đề thứ nhất: An mua một chiếc laptop cũ đã qua sử dụng 1 năm với giá 29,6 triệu đồng và sau 3 năm sử dụng, An bán chiếc laptop đó với giá 17 triệu đồng. An thắc mắc về sự chênh lệch giữa giá mua và giá bán và được nhân viên cửa hàng giải thích về mối liên hệ giữa giá tiền của một chiếc laptop và thời gian sử dụng. Hãy tính giá tiền ban đầu của chiếc laptop khi chưa qua sử dụng. + Vấn đề thứ hai: Lâm và Đồng mua số tờ giấy trắng và phong bì bằng nhau để viết thư gửi các bạn thiếu nhi tại huyện đảo Trường Sa. Lâm sử dụng một tờ giấy cho mỗi bức thư, còn Đồng sử dụng ba tờ giấy cho mỗi bức thư. Tìm số tờ giấy mỗi bạn đã mua. + Vấn đề thứ ba: Một cửa hàng bán giày thể thao hàng tuần bán được 50 đôi giày với giá 500 nghìn đồng một đôi. Cửa hàng muốn tăng doanh số bán hàng bằng cách giảm giá bán. Xác định giá bán để có lợi nhuận cao nhất, biết rằng giá nhập mỗi đôi giày là 300 nghìn đồng. Hãy chuẩn bị cho bản thân mình và hãy cố gắng học tập mỗi ngày để tự tin bước vào kỳ thi học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2022-2023. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề chọn HSG Toán 9 năm 2020 - 2021 phòng GDĐT Nha Trang - Khánh Hòa
Ngày … tháng 09 năm 2020, phòng Giáo dục và Đào tạo thành phố Nha Trang, tỉnh Khánh Hòa tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 9 năm học 2020 – 2021. Đề chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Nha Trang – Khánh Hòa gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Nha Trang – Khánh Hòa : + Tìm tất cả các số chính phương gồm 4 chữ số, biết rằng khi thêm 1 đơn vị vào chữ số hàng nghìn, thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục và thêm 3 đơn vị vào chữ số hàng đơn vị, ta vẫn được một số chính phương. + Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF. a) Chứng minh tam giác EDF vuông cân. b) Gọi O là giao điểm của AC và BD; I là trung điểm của EF. Chứng minh O, C, I thẳng hàng. c) Gọi M, N lần lượt là hai điểm di động trên các đoạn thẳng AB, AD sao cho BM = AN (M không trùng với A, B). Xác định vị trí của M, N để diện tích tứ giác BMND nhỏ nhất. + Trong mặt phẳng tọa độ Oxy, cho 5 điểm có tọa độ là các số nguyên. Chứng minh rằng có ít nhất một trung điểm của đoạn thẳng tạo thành từ 5 điểm đã cho có tọa độ là các số nguyên (trong mặt phẳng tọa độ Oxy, tọa độ trung điểm bằng trung bình cộng các tọa độ tương ứng của hai đầu đoạn thẳng).
Đề học sinh giỏi tỉnh MTCT Toán THCS năm 2020 - 2021 sở GDĐT Kiên Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi vòng tỉnh giải toán trên máy tính cầm tay môn Toán THCS năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2020. Trích dẫn đề học sinh giỏi tỉnh MTCT Toán THCS năm 2020 – 2021 sở GD&ĐT Kiên Giang : + Ba thùng táo có 240 trái. Nếu bán 2/3 thùng thứ nhất, 3/4 thùng thứ hai và 4/5 thùng thứ ba thì số táo còn lại trong các thùng đều bằng nhau. Tính số táo lúc ban đầu của mỗi thùng. + Tìm số tự nhiên có 4 chữ số biết nó là một số chính phương và nếu ta thêm vào mỗi chữ số của nó 1 đơn vị thì cũng được một số chính phương. + Tại siêu thị Nguyễn Kim một máy tính bỏ túi hiệu Casio fx-580VNX có giá gốc là 630000 đồng. Trong đợt dịch Covid 19 siêu thị có đợt khuyến mãi giảm lần thứ nhất giảm là 1a% so với giá gốc. Ngay đầu năm học siêu thị lại có thêm đợt khuyến mãi giảm lần thứ hai giảm 2b% so với giá đã được giảm lần thứ nhất. Do đó lúc này giá máy tính chỉ còn là 396900 đồng. Hỏi mỗi lần siêu thị đã giảm giá bao nhiêu phần trăm?
Đề HSG Toán 9 cấp huyện năm 2019 - 2020 phòng GDĐT Sông Lô - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề HSG Toán 9 cấp huyện năm học 2019 – 2020 phòng GD&ĐT Sông Lô – Vĩnh Phúc; đề thi có đáp án + lời giải chi tiết  + thang chấm điểm. Trích dẫn đề HSG Toán 9 cấp huyện năm 2019 – 2020 phòng GD&ĐT Sông Lô – Vĩnh Phúc : + Qua điểm K nằm ngoài đường tròn (O;R), kẻ đường thẳng cắt đường tròn (O) tại A và B (A nằm giữa K và B, AB < 2R). Gọi d là đường trung trực của KB, H là hình chiếu của O trên d. Gọi I là trung điểm của OK, N là trung điểm của AB, M là giao điểm của d và KB. a) Chứng minh tứ giác OHMN là hình chữ nhật và AK = 2OH. b) Tính IH theo R. + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của AC. Đường thẳng qua A vuông góc với BM cắt BC tại D. Chứng minh DB C 2D. + Trên đường tròn cho 6 điểm phân biệt. Hai điểm bất kì trong 6 điểm này đều được nối với nhau bằng một đoạn thẳng màu xanh hoặc màu đỏ. Chứng minh rằng tồn tại một tam giác có ba cạnh cùng màu.
Đề khảo sát đội tuyển HSG Toán 9 năm 2019 - 2020 phòng GDĐT Sầm Sơn - Thanh Hoá
Đề khảo sát đội tuyển HSG Toán 9 năm 2019 – 2020 phòng GD&ĐT Sầm Sơn – Thanh Hoá gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào ngày 06 tháng 01 năm 2020, đề thi có lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề khảo sát đội tuyển HSG Toán 9 năm 2019 – 2020 phòng GD&ĐT Sầm Sơn – Thanh Hoá : + Cho đường tròn (O;R) và dây cung BC cố định (BC < 2R). Điểm A di động trên (O;R) sao cho tam giác ABC là tam giác nhọn, AD là đường cao và H là trực tâm của tam giác ABC. a) Đường thẳng chứa tia phân giác ngoài của góc BHC cắt AB, AC lần lượt tại các điểm M, N. Chứng minh ∆AMN là tam giác cân b) Gọi E, F lần lượt là hình chiếu của D trên các đường thẳng BH, CH. Chứng minh: OA vuông góc EF. c) Đường tròn ngoại tiếp ∆AMN cắt đường phân giác trong của góc BAC tại K. Chứng minh đường thẳng HK luôn đi qua điểm cố định. + Tìm các số nguyên dương x, y, z với z 6 thỏa mãn phương trình sau: x 2 + y2 – 4x – 2y – 7z – 2 = 0 b) Cho số nguyên dương n thỏa mãn 2 2 12 1 2 n là số nguyên. Chứng minh 2 12 1 2 n là số chính phương. + Cho 3 số thực dương a, b, c thỏa mãn: abc = 1. Chứng minh bất đẳng thức.