Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Lương Tài - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Lương Tài – Bắc Ninh : + Một phố nhỏ có 44 người trong độ tuổi từ 1 đến 85 (tuổi mỗi người là một số nguyên dương). Chứng minh rằng trong số những người trên có hai người cùng tuổi hoặc có ba người mà tuổi của một người bằng tổng số tuổi của hai người kia. + Cho tam giác ABC vuông cân tại A. Giả sử D là điểm nằm bên trong tam giác sao cho tam giác ABD cân và 0 ADB 150. Trên nửa mặt phẳng không chứa D có bờ là đường thẳng AC lấy điểm E sao cho tam giác ACE là tam giác đều. Chứng minh ba điểm B, D, E thẳng hàng. + Một người gửi tiết kiệm vào ngân hàng với số tiền là 200 triệu đồng, gửi theo lãi suất 6% kì hạn một năm lĩnh lãi mỗi quí (3 tháng). Theo qui định nếu đến hạn mà không đến lĩnh lãi thì số đó sẽ được nhập vào vốn gửi ban đầu. Do công việc người đó không đến lĩnh quí thứ nhất, các quí còn lại vẫn đến lĩnh lãi bình thường. Vậy tổng số tiền gửi và lãi sau một năm người đó sẽ nhận được là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho n là số tự nhiên có hai chữ số. Tìm n biết n 4 và 2n đều là các số chính phương. + Cho xAy = 600 có tia phân giác Az. Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. 1) Chứng minh K là trung điểm của AC. 2) Chứng minh KMC là tam giác đều. 3) Cho BK = 2cm. Tính các cạnh của AKM. + Đa thức f(x) = ax2 + bx + c có a, b, c là các số nguyên và a 0. Biết với mọi giá trị nguyên của x thì f(x) luôn chia hết cho 23. Chứng minh rằng các số a, b, c đều chia hết cho 23.
Đề học sinh giỏi huyện Toán 7 năm 2009 - 2010 phòng GDĐT Phú Thiện - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai : + Cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D sao cho KD = KA. a. Chứng minh: CD // AB. b. Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N. Chứng minh rằng: ABH = CDH. c. Chứng minh: HMN cân. + Chứng minh rằng số có dạng abcabc luôn chia hết cho 11. + Cho tỉ lệ thức d c b a. Chứng minh rằng: (a + 2c)(b + d) = (a + c)(b + 2d).