Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề ôn tập thi THPTQG 2019 môn Toán sở GDĐT Vĩnh Long

Tài liệu gồm 726 trang giới thiệu 31 đề thi ôn tập kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019 của sở Giáo dục và Đào tạo tỉnh Vĩnh Long, các đề được biên soạn dựa theo 3 ma trận đề, có đáp án và lời giải chi tiết. Ma trận đề ôn tập thi THPTQG 2019 môn Toán sở GD&ĐT Vĩnh Long: HÀM SỐ VÀ CÁC VẤN ĐỀ LIÊN QUAN 1. Xét tính đơn điệu của hàm số (biết y, y’). 2. Tìm cực trị, điểm cực trị (biết đồ thị, bảng biến thiên). 3 Nhận dạng bảng biến thiên, nhận dạng hàm số. 4. GTLN và GTNN biết đồ thị, bảng biến thiên. 5 Tìm đường tiệm cận (biết y). 6. Nhận dạng 3 hàm số thường gặp (biết đồ thị, bảng biến thiên). 7. Điều kiện để hàm số bậc ba đơn điệu trên khoảng K. 8. Điều kiện để hàm số có cực trị tại x0 (cụ thể). 9. Điều kiện hình học về 2 điểm cực trị (hàm bậc ba). 10. Nhận dạng hàm số chứa dấu giá trị tuyệt đối (biết đồ thị). 11. Đồ thị hàm nhất biến cắt d, thoả điều kiện hình học. 12. Bài toán thực tế, liên môn về GTLN – GTNN (max – min). HÀM SỐ LUỸ THỪA, MŨ VÀ LÔGARIT 13. Tập xác định của hàm luỹ thừa, hàm vô tỷ. 14. Thu gọn biểu thức, luỹ thừa. 15. Tìm tập xác định của hàm số mũ, hàm số lôgarít. 16. Bài toán thực tế, liên môn. 17. Dạng phương trình, bất phương trình mũ cơ bản. 18. Toán tham số về phương trình mũ. NGUYÊN HÀM TÍCH PHÂN VÀ ỨNG DỤNG 19. Công thức nguyên hàm cơ bản, mở rộng. 20. Hàm phân thức (chỉ biến đổi, không đặt). 21. Thể hiện quy tắc đổi biến (cho sẵn phép đặt t). 22. Phương pháp từng phần (với u = lôgarit). 23. Câu hỏi giải bằng định nghĩa, ý nghĩa hình học. 24. Thể tích vật thể tròn xoay y = f(x), y = g(x) … (quanh Ox). 25. Bài toán thực tế (gắn hệ trục, tìm đường cong …). [ads] SỐ PHỨC 26. Phần thực, phần ảo. 27. Câu hỏi về mối liên hệ giữa 2 nghiệm phương trình. 28. Tập hợp điểm biểu diễn là đường tròn, hình tròn 29. Max – min của môđun của số phức. KHỐI ĐA DIỆN 30. Tính chất đối xứng của khối đa diện. 31. Phân chia, lắp ghép khối đa diện. 32. Khối chóp có một cạnh bên vuông góc với đáy. 33. Sử dụng định về tỉ số thể tích. 34. Khối lăng trụ xiên (có một mặt bên vuông góc với đáy). 35. Khối hộp chữ nhật KHỐI TRÒN XOAY 36. Tính độ dài đường sinh, bán kính đáy, đường cao khối nón. 37. Tính diện tích xung quanh, diện tích toàn phần khối trụ. 38. Mặt cầu nội tiếp – ngoại tiếp đa diện. OXYZ 39. Tìm tọa độ điểm, tọa độ véctơ thỏa điều kiện cho trước. 40. Tìm tâm và bán kính, điều kiện xác định mặt cầu. 41. Phương trình mặt cầu biết tâm, tiếp xúc với mặt phẳng. 42. Phương trình mặt phẳng qua 3 điểm không thẳng hàng. 43. Phương trình đường thẳng qua 1 điểm, VTCP tìm bằng tích có hướng (cho đường thẳng + mặt phẳng). 44. Xét vị trí tương đối giữa đường thẳng và mặt phẳng. 45. Max – min trong không gian Oxyz. CÁC BÀI TOÁN VẬN DỤNG 46. Tích phân hàm ẩn phương pháp đổi biến. 47. Tích phân hàm ẩn phương pháp từng phần. 48. Max – min của môđun của số phức. 49. Max – min trong không gian Oxyz. 50. Max – min trong không gian Oxyz.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 15 đề ôn thi TN THPT 2022 môn Toán dành cho học sinh TB - Yếu
Tài liệu gồm 69 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển tập 15 đề ôn thi tốt nghiệp THPT năm 2022 môn Toán dành cho học sinh có học lực mức Trung bình – Yếu (chinh phục mức 7 điểm). Các đề được biên soạn theo hình thức trắc nghiệm với 40 câu hỏi và bài toán; có bảng đáp án.
Đề kiểm tra khảo sát Toán 12 năm 2021 - 2022 sở GDĐT Bình Thuận
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Thuận (mã đề 021), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT 2022 môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Trích dẫn đề kiểm tra khảo sát Toán 12 năm 2021 – 2022 sở GD&ĐT Bình Thuận : + Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = x3 + 2×2 – 2mx – 1 (m là tham số) và y = x3 + x2 + 3 đạt giá trị nhỏ nhất bằng? + Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; AD = 2AB = 2BC và SC vuông góc với mặt phẳng (ABCD). Nếu A(3;0;0), D(0;3;0), S(0;0;3) và C có hoành độ dương thì tung độ của B bằng? + Cho khối trụ (T) có bán kính R và chiều cao h = R2. Gọi A và B là hai điểm lần lượt thuộc hai đường tròn đáy của (T). Nếu góc và khoảng cách giữa đường thẳng AB và trục của (T) lần lượt là 45° và a thì thể tích của (T) bằng?
Đề khảo sát chất lượng Toán 12 năm 2021 - 2022 sở GDĐT Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND thành phố Hải Phòng (mã đề thi 112), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022 sắp tới; kỳ thi được diễn ra vào thứ Ba ngày 24 tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Trong không gian Oxyz, cho điểm A(13;–7;–13), B(1;–1;5) và C(1;1;–3). Xét các mặt phẳng (P) đi qua C sao cho A và B nằm cùng phía so với (P). Khi d(A;(P)) + 2d(B;(P)) đạt giá trị lớn nhất thì (P) có dạng ax + by + cz + 3 = 0. Giá trị của a + b + c bằng? + Gọi (H) là hình phẳng giới hạn bởi các đường y = (x − 3)2, trục tung và trục hoành. Gọi k1, k2 (k1 > k2) là hệ số góc của hai đường thẳng cùng đi qua điểm A(0;9) và chia (H) làm ba phần có diện tích bằng nhau. Tính k1 – k2. + Cho hàm số y = f(x) có đạo hàm trên R và f'(x) = (x + 1)(x − 2). Tính tổng tất cả các giá trị nguyên của m để hàm số y = f(|2×3 − 3×2 − 12x + m|) có nhiều điểm cực trị nhất.
Đề kiểm tra đánh giá Toán 12 năm 2021 - 2022 sở GDĐT Bắc Kạn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra đánh giá kết quả ôn tập của học sinh lớp 12 môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bắc Kạn; kỳ thi được diễn ra vào ngày 23 tháng 05 năm 2022; nhằm mục đích chuẩn bị cho kỳ thi tốt nghiệp THPT năm 2022 sắp tới. Trích dẫn đề kiểm tra đánh giá Toán 12 năm 2021 – 2022 sở GD&ĐT Bắc Kạn : + Trong không gian Oxyz cho điểm M(1;2;3). Mặt phẳng (P) đi qua M cắt các trục tọa độ Ox; Oy; Oz lần lượt tạiA; B; C sao cho M là trọng tâm của tam giác ABC. Phương trình mặt phẳng (P) là? + Cho hai mặt phẳng (P); (Q) song song với nhau và cùng cắt khối cầu tâm O, bán kính R = 2a thành hai hình tròn cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai hình tròn này và có đáy là hình tròn còn lại. Khoảng cách h giữa hai mặt phẳng (P) và (Q) để diện tích xung quanh của hình nón là lớn nhất là? + Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt cầu (S1): x2 + y2 + z2 = 1, (S2): x2 + (y – 4)2 + z2 = 4 và các điểm A(4;0;0), B(1/4,0,0), C(1;4;0), D(4;4;0). Gọi M là điểm thay đổi trên (S1), N là điểm thay đổi trên(S2). Giá trị nhỏ nhất của MA + 2ND + 4MN + 4BC là?