Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đại lượng tỉ lệ nghịch Toán 7

Tài liệu gồm 41 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đại lượng tỉ lệ nghịch trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Bài toán áp dụng công thức đại lượng tỉ lệ nghịch và dựa vào tính chất tỉ lệ nghịch để tìm các đại lượng. Dạng 1.1 Biểu diễn mối quan hệ tỉ lệ nghịch, xác định hệ số. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Nếu viết 1 y k x (k khác 0) thì có tương ứng mới y tỉ lệ thuận với 1 x theo hệ số tỉ lệ k. – Hệ số tỉ lệ k là k x y. Dạng 1.2 Tìm các đại lượng chưa biết. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Dùng công thức k y x để xác định tương quan tỉ lệ nghịch giữa hai đại lượng và xác định hệ số tỉ lệ. – Nếu hai đại lượng tỉ lệ nghịch với nhau thì: 2 x y k. Dạng 1.3 Kiểm tra xem các đại lượng có tỉ lệ nghịch với nhau không? – Trong mỗi công thức k y x (k khác 0), với mỗi giá trị của x cho tương ứng một giá trị của y. – Kiểm tra nếu có tỉ lệ 1 2 x y k thì hai đại lượng y và x tỉ lệ nghịch với nhau. Dạng 1.4 Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch và xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. – Để lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch ta thực hiện theo hai bước sau: + Bước 1. Xác định hệ số tỉ lệ k. + Bước 2. Dùng công thức xy k tìm các giá trị tương ứng của x và y. – Để xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. Ta xét xem tất cả tích các giá trị tương ứng của hai đại lượng có bằng nhau hay không: + Nếu tích bằng nhau thì các đại lượng tỉ lệ nghịch. + Nếu tích không bằng nhau thì các đại lượng không tỉ lệ nghịch. Dạng 2 . Một số bài toán tỉ lệ nghịch. 1. Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượng và quan hệ giữa chúng là hai đại lượng tỉ lệ nghịch. + Bước 2: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. 2. Bài toán tìm hai số biết chúng tỉ lệ nghịch với a và b. – Giả sử cần tìm hai số x và y biết chúng tỉ lệ nghịch với a và b (a và b là các số đã biết). Khi đó ta có ax by. Từ đó dựa vào điều kiện của x và y ta áp dụng tính chất dãy tỉ số bằng nhau một cách hợp lý để giải quyết bài toán. – Chú ý: Nếu hai số x và y tỉ lệ nghịch với a và b thì hai số x và y tỉ lệ thuận với 1 a và 1 b. Dạng 2.1 Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượngvà đặt ẩn phụ cho các đại lượng nếu cần. + Bước 2: Xác định quan hệ tỉ lệ nghịch giữa hai đại lượng tỉ lệ nghịch. + Bước 3: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. Dạng 2.2 Bài toán về nhiều đại lượng tỉ lệ nghịch. – Giả sử cần tìm hai số x y z t tỉ lệ nghịch với các số a b c d. Khi đó ta có ax by cz dt. – Tìm BCNN (a b c d e) rồi chia quan hệ ax by cz dt cho số vừa tìm được. – Áp dụng tính chất của dãy tỉ số bằng nhau rút x y z t. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính chất ba đường phân giác của tam giác
Nội dung Chuyên đề tính chất ba đường phân giác của tam giác Bản PDF - Nội dung bài viết Tài liệu chuyên đề tính chất ba đường phân giác của tam giác Tài liệu chuyên đề tính chất ba đường phân giác của tam giác Để giúp các học sinh lớp 7 nắm vững kiến thức về tính chất ba đường phân giác của tam giác, tài liệu này bao gồm 10 trang với nhiều dạng toán và bài tập thực hành. Trước hết, chúng ta sẽ tìm hiểu về trọng tâm của tam giác, đồng thời áp dụng các định lí và tính chất để chứng minh các phát biểu liên quan. Chúng ta cũng sẽ hiểu rõ về định nghĩa và tính chất của đường phân giác trong tam giác cân. Trong quá trình học tập, chúng ta sẽ gặp các dạng bài tập như: chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau; chứng minh ba đường đồng quy, ba điểm thẳng hàng; tìm đường phân giác của các tam giác đặc biệt; và khám phá mối quan hệ trong các góc của tam giác. Mục tiêu của tài liệu là giúp học sinh phát triển kiến thức và kỹ năng trong việc áp dụng các định lí hình học để giải quyết các bài toán thực tế. Hy vọng rằng thông qua tài liệu này, học sinh sẽ hiểu rõ hơn về quan hệ giữa các yếu tố trong tam giác và công việc chứng minh hình học.
Chuyên đề tính chất tia phân giác của một góc
Nội dung Chuyên đề tính chất tia phân giác của một góc Bản PDF - Nội dung bài viết Tài liệu chuyên đề: Tính chất tia phân giác của một góc Tài liệu chuyên đề: Tính chất tia phân giác của một góc
Chuyên đề tính chất ba đường trung tuyến của tam giác
Nội dung Chuyên đề tính chất ba đường trung tuyến của tam giác Bản PDF - Nội dung bài viết Tài liệu học tập về tính chất ba đường trung tuyến của tam giácI. LÝ THUYẾT TRỌNG TÂMII. CÁC DẠNG BÀI TẬPDạng 1: Sử dụng tính chất trọng tâm tam giácDạng 2: Chứng minh một điểm là trọng tâm tam giácDạng 3: Đường trung tuyến của tam giác cân, tam giác đều, tam giác vuông Tài liệu học tập về tính chất ba đường trung tuyến của tam giác Tài liệu này bao gồm 11 trang, cung cấp lý thuyết về trọng tâm, các dạng toán và bài tập liên quan đến tính chất ba đường trung tuyến của tam giác. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh lớp 7 trong quá trình học tập chương trình Toán lớp 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu học tập của tài liệu bao gồm: Kiến thức: Phát biểu được định nghĩa đường trung tuyến của tam giác và tính chất ba đường trung tuyến của tam giác. Kĩ năng: Vẽ được các đường trung tuyến của tam giác và áp dụng các định nghĩa và tính chất về đường trung tuyến. I. LÝ THUYẾT TRỌNG TÂM Trong phần này, bạn sẽ được giới thiệu về khái niệm trọng tâm của tam giác và cách tính toán liên quan đến trọng tâm. II. CÁC DẠNG BÀI TẬP Dạng 1: Sử dụng tính chất trọng tâm tam giác Trong dạng này, bạn sẽ học cách xác định trọng tâm và sử dụng tính chất của ba đường trung tuyến của tam giác để giải bài tập. Dạng 2: Chứng minh một điểm là trọng tâm tam giác Bằng cách sử dụng tính chất của trọng tâm, bạn sẽ được hướng dẫn cách chứng minh một điểm là trọng tâm của tam giác. Dạng 3: Đường trung tuyến của tam giác cân, tam giác đều, tam giác vuông Trong dạng này, bạn sẽ được hướng dẫn về tính chất đặc biệt của tam giác cân, tam giác đều và tam giác vuông, và cách xác định đường trung tuyến trong các trường hợp này. Với tài liệu này, bạn sẽ nắm vững kiến thức cơ bản về tam giác và tính chất của ba đường trung tuyến, giúp bạn nâng cao kiến thức và kỹ năng trong môn Toán.
Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác
Nội dung Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác Bản PDF - Nội dung bài viết Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giácI. LÝ THUYẾT TRỌNG TÂMII. CÁC DẠNG BÀI TẬPDạng 1: Sử dụng điều kiện tồn tại tam giác dựa vào độ dài ba cạnhDạng 2: Chứng minh các bất đẳng thức về độ dài Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác Chuyên đề này bao gồm 08 trang tài liệu, cung cấp kiến thức về lý thuyết trọng tâm, các dạng toán và bài tập liên quan đến quan hệ giữa ba cạnh của tam giác và bất đẳng thức tam giác. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh lớp 7 hiểu rõ hơn về chương trình Toán lớp 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác và các đường đồng quy trong tam giác. Mục tiêu của chuyên đề là: Kiến thức: Phát biểu được định lí và hệ quả của bất đẳng thức tam giác. Kỹ năng: Vận dụng được định lí và hệ quả của bất đẳng thức tam giác trong các bài toán. I. LÝ THUYẾT TRỌNG TÂM Trong phần này, chúng ta sẽ tìm hiểu về trọng tâm của tam giác và vai trò của nó trong quan hệ giữa ba cạnh của tam giác. II. CÁC DẠNG BÀI TẬP Dạng 1: Sử dụng điều kiện tồn tại tam giác dựa vào độ dài ba cạnh Để xác định tam giác có tồn tại hay không, chúng ta cần áp dụng bất đẳng thức tam giác và xét các trường hợp khác nhau. Dạng 2: Chứng minh các bất đẳng thức về độ dài Trong dạng này, chúng ta sẽ sử dụng bất đẳng thức tam giác và thực hiện các biến đổi phù hợp để chứng minh các bất đẳng thức liên quan đến độ dài các cạnh của tam giác. Chúc các bạn học sinh lớp 7 học tập hiệu quả và thành công trong việc giải các bài toán liên quan đến quan hệ giữa ba cạnh của tam giác và bất đẳng thức tam giác!