Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm tổ hợp và xác suất có lời giải chi tiết - Nguyễn Phú Khánh, Huỳnh Đức Khánh

Tài liệu gồm 55 trang tuyển tập các bài toán có lời giải chi tiết trong chủ đề tổ hợp và xác suất (Chương 2, Đại số và Giải tích 11) Bài 01. QUY TẮC ĐẾM 1. Quy tắc cộng : Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kỳ cách nào của hành động thứ nhất thì công việc đó có m +n cách thực hiện. 2. Quy tắc nhân : Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m×n cách hoàn thành công việc. + Vấn đề 1. QUY TẮC CỘNG + Vấn đề 2. QUY TẮC CỘNG Bài 02. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP 1. Hoán vị : Cho tập A gồm n phần tử (n ≥ 1). Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó. 2. Chỉnh hợp : Cho tập hợp A gồm n phần tử (n ≥ 1). Kết quả của việc lấy k (1 ≤ k ≤ n) phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho. 3. Tổ hợp : Giả sử tập A có n phần tử (n ≥ 1). Mỗi tập con gồm k (1 ≤ k ≤ n) phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho. [ads] + Vấn đề 1. HOÁN VỊ + Vấn đề 2. CHỈNH HỢP + Vấn đề 3. TỔ HỢP + Vấn đề 4. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH Bài 03. NHỊ THỨC NIU-TƠN Bài 04. BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ 1. Phép thử và không gian mẫu : Phép thử ngẫu nhiên (gọi tắt là phép thử) là một thí nghiệm hay một hành động mà: • Kết quả của nó không đoán trước được. • Có thể xác định được tập hợp tất cả các kết quả có thể xảy ra của phép thử đó. Tập hợp mọi kết quả của một phép thử T được gọi là không gian mẫu của T và được kí hiệu là Ω. Số phần tử của không gian mẫu được kí hiệu là n(Ω) hay Ω. 2. Biến cố : Biến cố A liên quan đến phép thử T là biến cố mà việc xảy ra hay không xảy ra của A tùy thuộc vào kết quả của T. Mỗi kết quả của phép thử T làm cho A xảy ra được gọi là một kết quả thuận lợi cho A. Tập hợp các kết quả thuận lợi cho A được kí hiệu là ΩA 3. Xác suất : Giả sử phép thử T có không gian mẫu Ω là một tập hữu hạn và các kết quả của T là đồng khả năng. Nếu A là một biến cố liên quan với phép thử T và ΩA là một tập hợp các kết quả thuận lợi cho A thì xác suất của A là một số, kí hiệu là P(A), được xác định bởi công thức: P(A) = ΩA/Ω

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC bất phương trình mũ và bất phương trình lôgarit
Tài liệu gồm 17 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) bất phương trình mũ và bất phương trình lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC bất phương trình mũ và bất phương trình lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Phương pháp biến đổi tương đương đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa. Dạng 4. Phương pháp sử dụng tính đơn điệu. Xem thêm : Các dạng bài tập VDC phương trình mũ và phương trình lôgarit
Các dạng bài tập VDC phương trình mũ và phương trình lôgarit
Tài liệu gồm 41 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình mũ và phương trình lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC phương trình mũ và phương trình lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM I. PHƯƠNG TRÌNH MŨ. 1. Phương trình mũ cơ bản. 2. Cách giải một số phương trình mũ cơ bản: Đưa về cùng cơ số; Phương pháp đặt ẩn phụ; Logarit hóa. II. PHƯƠNG TRÌNH LOGARIT. 1. Phương trình logarit cơ bản. 2. Cách giải một số phương trình mũ cơ bản: Đưa về cùng cơ số, Phương pháp đặt ẩn phụ; Mũ hóa. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Phương pháp đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa, mũ hóa. Dạng 4. Phương pháp biến đổi thành tích. Dạng 5. Phương pháp sử dụng tính đơn điệu.
Các dạng bài tập VDC hàm số mũ và hàm số lôgarit
Tài liệu gồm 37 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) hàm số mũ và hàm số lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC hàm số mũ và hàm số lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Hàm số mũ. 2. Hàm số lôgarit. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tìm tập xác định của hàm số chứa mũ – lôgarit. Dạng 2. Đồ thị hàm số mũ – lôgarit. Dạng 3. Xét tính đơn điệu, cực trị, GTLN và GTNN của hàm số mũ – logarit. Dạng 4. Tìm GTLN và GTNN của hàm số mũ – logarit nhiều biến. Dạng 5. Bài toán lãi suất. Xem thêm : + Bài tập VD – VDC hàm số luỹ thừa, hàm số mũ và hàm số lôgarit + Trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông
Các dạng bài tập VDC lôgarit
Tài liệu gồm 19 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Khái niệm lôgarit. 2. Tính chất. 3. Quy tắc tính lôgarit. a. Lôgarit của một tích. b. Lôgarit của một thương. c. Lôgarit của một lũy thừa. 4. Đổi cơ số. 5. Lôgarit thập phân – lôgarit tự nhiên. a. Lôgarit thập phân. b. Lôgarit tự nhiên. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tính giá trị của biểu thức không có điều kiện. Rút gọn biểu thức. Dạng 2. Đẳng thức chứa logarit. Dạng 3. Biểu thị biểu thức theo một biểu thức đã cho và từ đó tìm giá trị lớn nhất và giá trị nhỏ nhất (GTLN – GTNN).