Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 2 Toán 12 năm 2019 - 2020 trường Đoàn Thượng - Hải Dương

Với mục đích kiểm tra kiến thức môn Toán 12 trong quá trình chuẩn bị cho kỳ thi THPT Quốc gia môn Toán, ngày … tháng 12 năm 2019, trường THPT Đoàn Thượng, tỉnh Hải Dương tổ chức kỳ thi khảo sát chất lượng Toán 12 lần thứ hai năm học 2019 – 2020. Đề khảo sát lần 2 Toán 12 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương mã đề 132 gồm 07 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút; nội dung kiểm tra gồm các chủ đề: khảo sát hàm số, mũ và logarit, nguyên hàm và tích phân, thể tích khối đa diện, mặt nón – trụ – cầu và một số câu hỏi thuộc chương trình Toán 11; đề thi có đáp án. Trích dẫn đề khảo sát lần 2 Toán 12 năm 2019 – 2020 trường Đoàn Thượng – Hải Dương : + Cho hai đường thẳng song song d1, d2. Trên d1 lấy 5 điểm phân biệt tô màu xanh, trên d2 lấy 8 điểm phân biệt tô màu đỏ. Xét tất cả các tam giác có đỉnh lấy từ các điểm trên. Chọn ngẫu nhiên một tam giác. Tính xác suất để tam giác được chọn có đúng hai đỉnh màu xanh. + Từ các số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên, mỗi số có sáu chữ số đồng thời thỏa mãn điều kiện: Sáu số của mỗi số là khác nhau và trong mỗi số đó tổng của 3 chữ số đầu nhỏ hơn tổng của 3 chữ số sau một đơn vị. [ads] + Cho một tấm nhôm hình chữ nhật ABCD có AD = 60 cm. Ta gập tấm nhôm theo hai cạnh MN và PQ vào phía trong đến khi AB và DC trùng nhau như hình vẽ sau đây để được một hình lăng trụ khuyết hai đáy. Tìm x để thể tích khối lăng trụ là lớn nhất? + Giả sử F(x) là nguyên hàm của hàm số f(x) = 4x + 1. Đồ thị của hàm số F(x) và f(x) cắt nhau tại một điểm trên trục tung. Tất cả các điểm chung của đồ thị hai hàm số trên là? + Cho tam giác ABC vuông tại A, AB = c, AC = b. Gọi V1, V2, V3 là thể tích các khối tròn xoay sinh bởi tam giác đó khi lần lượt quay quanh AB, CA, BC. So sánh 1/V3^2 và 1/V1^2 + 1/V2^2 ta được?

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL lần 4 Toán 12 năm 2018 - 2019 trường Yên Khánh A - Ninh Bình
giới thiệu đến các em đề thi KSCL lần 4 Toán 12 năm 2018 – 2019 trường Yên Khánh A – Ninh Bình, kỳ thi nhằm giúp học sinh khối 12 của nhà trường rèn luyện thường xuyên để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019 sắp diễn ra. Trích dẫn đề thi KSCL lần 4 Toán 12 năm 2018 – 2019 trường Yên Khánh A – Ninh Bình : + Cho vật thể (T) giới hạn bởi hai mặt phẳng x = 0, x = 2. Cắt vật thể (T) bởi mặt phẳng vuông góc với trục Ox tại x (0 ≤ x ≤ 2) ta thu được thiết diện là một hình vuông có cạnh bằng (x + 1)e^x. Thể tích vật thể (T) bằng? [ads] + Cho số phức z thỏa mãn: |z + 2 – i| = 3. Tập hợp các điểm trong mặt phẳng tọa độ (Oxy) biểu diễn số phức w = 1 + z‾ là: A. Đường tròn tâm I(-2;1), bán kính R = 3. B. Đường tròn tâm I(2;-1), bán kính R = 3. C. Đường tròn tâm I(-1;-1), bán kính R = 9. D. Đường tròn tâm I(-1;-1) bán kính R = 3. + Gọi X là tập hợp tất cả các số tự nhiên có 6 chữ số đôi một khác nhau. Lấy ngẫu nhiên một số thuộc tập X. Tính xác suất để số lấy được luôn chứa đúng ba số thuộc tập Y = {1; 2; 3; 4; 5} và ba số đứng cạnh nhau, số chẵn đứng giữa hai số lẻ.
Đề khảo sát chất lượng Toán 12 năm học 2018 - 2019 sở GDĐT Thanh Hóa
Chiều thứ Tư ngày 10 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Thanh Hóa đã tổ chức kỳ thi khảo sát chất lượng Toán 12 năm học 2018 – 2019, kỳ thi nhằm kiểm tra lại các kiến thức Toán THPT của học sinh khối 12 trên toàn tỉnh trong quá trình các em chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019. Đề khảo sát chất lượng Toán 12 năm học 2018 – 2019 sở GD&ĐT Thanh Hóa có mã đề 101 gồm 06 trang, đề được biên soạn dưới dạng trắc nghiệm 04 đáp án A, B, C, D với tổng cộng 50 câu, học sinh làm bài KSCL Toán 12 trong thời gian 90 phút, đề có cấu trúc tương tự đề minh họa THPT QG môn Toán năm 2019 do Bộ Giáo dục và Đào tạo công bố, đề thi có đáp án mã đề 101, 102, 103, 104 và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Trích dẫn đề khảo sát chất lượng Toán 12 năm học 2018 – 2019 sở GD&ĐT Thanh Hóa : + Một khuôn viên dạng nửa hình tròn, trên đó người thiết kế phần để trồng hoa có dạng của một cánh hoa hình parabol có đỉnh trùng với tâm và có trục đối xứng vuông góc với đường kính của nửa hình tròn, hai đầu mút của cánh hoa nằm trên nửa đường tròn (phần tô màu) và cách nhau một khoảng bằng 4 (m). Phần còn lại của khuôn viên (phần không tô màu) dành để trồng cỏ Nhật Bản. Biết các kích thước cho như hình vẽ, chi phí để trồng hoa và cỏ Nhật Bản tương ứng là 150.000 đồng/m2 và 100.000 đồng/m2. Hỏi cần bao nhiêu tiền để trồng hoa và trồng cỏ Nhật Bản trong khuôn viên đó? (Số tiền được làm tròn đến hàng đơn vị). [ads] + Bạn H trúng tuyển vào Trường Đại học Ngoại Thương nhưng vì do không đủ tiền nộp học phí nên H quyết định vay ngân hàng trong bốn năm mỗi năm 4 triệu đồng để nộp học phí với lãi suất ưu đãi 3% / năm. Ngay sau khi tốt nghiệp Đại học bạn H thực hiện trả góp hàng tháng cho ngân hàng số tiền (không đổi) với lãi suất theo cách tính mới là 0,25% / tháng trong vòng 5 năm. Tính số tiền hàng tháng mà bạn H phải trả cho ngân hàng (kết quả làm tròn đến hàng đơn vị). + Một hộp đựng mỹ phẩm được thiết kế (tham khảo hình vẽ) có thân hộp là hình trụ có bán kính hình tròn đáy r = 5cm, chiều cao h = 6cm và nắp hộp là một nửa hình cầu. Người ta cần sơn mặt ngoài của cái hộp đó (không sơn đáy) thì diện tích S cần sơn là?
Đề kiểm tra KSCL lần 2 Toán 12 năm 2018 - 2019 trường Thanh Thủy - Phú Thọ
Vừa qua, trường THPT Thanh Thủy – Phú Thọ tiếp tục tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán 12 lần thứ 2 năm học 2018 – 2019, nhằm giúp học sinh khối 12 của trường tiếp tục được rèn luyện để củng cố, nâng cao kiến thức, kỹ năng giải toán để hướng đến kỳ thi THPT Quốc gia 2019 môn Toán. Đề kiểm tra KSCL lần 2 Toán 12 năm 2018 – 2019 trường Thanh Thủy – Phú Thọ có mã đề 156 gồm 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài. Trích dẫn đề kiểm tra KSCL lần 2 Toán 12 năm 2018 – 2019 trường Thanh Thủy – Phú Thọ : + Anh Tuấn đi làm với mức lương khởi điểm là x (triệu đồng)/tháng, và số tiền lương này được nhận vào ngày đầu tháng. Vì làm việc chăm chỉ và có trách nhiệm nên sau 3 năm kể từ ngày đi làm, anh Tuấn được tăng lương thêm 10%. Mỗi tháng, anh ta giữ lại 20% số tiền lương để gửi tiết kiệm vào ngân hàng với kì hạn 1 tháng và lãi suất là 0,5%/tháng, theo hình thức lãi kép (tức là tiền lãi của tháng này được nhập vào vốn để tính lãi cho tháng tiếp theo). Sau 4 năm kể từ ngày đi làm, anh Tuấn nhận được số tiền cả gốc và lãi là 100 triệu đồng. Hỏi mức lương khởi điểm của người đó là bao nhiêu? [ads] + Trong một giải cờ vua gồm nam và nữ vận động viên. Mỗi vận động viên phải chơi hai ván với mỗi vận động viên còn lại. Biết có ba vận động viên nữ và số ván các vận động viên nam chơi với nhau hơn số ván họ chơi với ba vận động viên nữ là 78. Tổng số ván cờ vua của giải đấu là? + Cho hàm số đa thức bậc ba y = f(x) có đồ thị đi qua các điểm A(2;3), B(3;8), C(4;15). Các đường thẳng AB, AC, BC lại cắt đồ thị tại lần lượt tại các điểm D, E, F (D khác A và B, E khác A và C, F khác B và C). Biết rằng tổng các hoành độ của D, E, F bằng 6. Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 1 là?
Đề thi khảo sát Toán 12 lần 3 năm 2018 - 2019 trường THPT chuyên Hưng Yên
Vừa qua, trường THPT chuyên Hưng Yên (Số 1 – đường Chu Văn An – phường An Tảo – TP Hưng Yên – tỉnh Hưng Yên) đã tổ chức kỳ thi khảo sát chất lượng môn Toán 12 lần thứ 3 năm học 2018 – 2019, kỳ thi nhằm kiểm tra đánh giá thường xuyên kiến thức Toán THPT của học sinh khối 12 trong quá trình các em chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019. Đề thi khảo sát Toán 12 lần 3 năm 2018 – 2019 trường THPT chuyên Hưng Yên có mã đề 134, đề gồm 06 trang với 50 câu trắc nghiệm dạng 04 đáp án A, B, C, D, học sinh làm bài thi Toán trong thời gian 90 phút. [ads] Trích dẫn đề thi khảo sát Toán 12 lần 3 năm 2018 – 2019 trường THPT chuyên Hưng Yên : + Để chuẩn bị cho hội trại do Đoàn trường THPT chuyên Hưng Yên tổ chức, lớp 12A dự định dựng một cái lều trại có dạng hình parabol như hình vẽ. Nền của lều trại là một hình chữ nhật có kích thước bề ngang 3 mét, chiều dài 6 mét, đỉnh trại cách nền 3 mét. Tính thể tích phần không gian bên trong lều trại. + Một tay đua đang điều khiển chiếc xe đua của mình với vận tốc 180 km/h. Tay đua nhấn ga để về đích kể từ đó xe chạy với gia tốc a(t) = 2t + 1 (m/s2). Hỏi rằng 4s sau khi tay đua nhấn ga thì xe đua chạy với vận tốc bao nhiêu km/h. + Trong không gian Oxyz, cho mặt cầu (S): (x – 1)^2 + (y – 2)^2 + (z – 3)^2 = 25 và M(4;6;3). Qua M kẻ các tia Mx, My, Mz đôi một vuông góc với nhau và cắt mặt cầu tại các điểm thứ hai tương ứng là A, B, C. Biết mặt phẳng (ABC) luôn đi qua một điểm cố định H(a;b;c). Tính a + 3b – c.