Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán lần 2 năm 2018 2019 trường THCS Đại Áng Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán lần 2 năm 2018 2019 trường THCS Đại Áng Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát lớp 9 môn Toán lần 2 năm 2018-2019 trường THCS Đại Áng Hà Nội Đề khảo sát lớp 9 môn Toán lần 2 năm 2018-2019 trường THCS Đại Áng Hà Nội Vào Chủ Nhật ngày 03 tháng 03 năm 2019, trường Trung học Cơ sở Đại Áng, Thanh Trì – Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần 2 năm học 2018-2019. Kỳ thi bao gồm 05 bài toán tự luận, học sinh có thời gian 120 phút để hoàn thành bài thi. Mục tiêu của kỳ thi là kiểm tra năng lực Toán của học sinh lớp 9 vào giữa học kỳ 2 năm học 2018-2019, cũng như giúp học sinh chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019-2020. Trích đề khảo sát Toán lớp 9 lần 2 năm 2018-2019 trường THCS Đại Áng – Hà Nội: Bài 1: Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một xe ô tô dự định đi từ tỉnh A đến tỉnh B với vận tốc 40 km/h. Lúc đầu ô tô đi với vận tốc đó, khi còn 60 km nữa thì được nửa quãng đường AB người lái xe quyết định tăng vận tốc thêm 10 km/h trên quãng đường còn lại. Kết quả là xe đến B sớm hơn 1 giờ so với dự định. Hãy tính quãng đường AB? Bài 2: Cho parabol (P): y=x^2 và đường thẳng (d): y = mx + 3 (m là tham số). a) Chứng minh rằng (d) luôn cắt (P) tại 2 điểm phân biệt. b) Biết A(2; 4) là một trong 2 giao điểm của (d) và (P). Hãy tìm giá trị của m? Bài 3: Xác định vị trí của các điểm A, B, C, D, E, và F theo yêu cầu sau: - Điểm H thuộc đoạn thẳng AO và không trùng với A hoặc O. - Đường thẳng vuông góc với AD và đi qua H cắt nửa đường tròn (O) tại C. - Trên cung BC của nửa đường tròn, chọn điểm D bất kì (D khác B và C), và tiếp tuyến tại D cắt HC tại E. - Gọi I là giao điểm giữa AD và HC. Chứng minh rằng tứ giác HBDI nội tiếp, tam giác DEI cân, và góc ABF có giá trị không đổi khi D thay đổi trên cung BC (D khác B và C). Đề thi khảo sát Toán lớp 9 lần 2 năm 2018-2019 của trường THCS Đại Áng mang tính chất thực tế, khuyến khích học sinh sử dụng kiến thức và kỹ năng tự học để giải quyết các bài toán phức tạp.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 trường THCS Ái Mộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Ái Mộ, quận Long Biên, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2021. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2020 – 2021 trường THCS Ái Mộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để ủng hộ các gia đình gặp khó khăn tại một số địa phương do ảnh hưởng của dịch Covid-19, một số tổ chức thiện nguyện đã dự định chở 180 tấn hàng chia đều bằng một số xe cùng loại. Lúc khởi hành, có 2 xe bị hỏng nên mỗi xe phải chở thêm 3 tấn so với dự định. Hỏi ban đầu có bao nhiêu xe tham gia chở hàng? + Bán kính Trái Đất là 6370 km. Biết rằng 29% diện tích bề mặt trái đất không bị bao phủ bởi nước gồm núi, sa mạc, cao nguyên, đồng bằng và các địa hình khác. Tính diện tích bề mặt Trái Đất bị bao phủ bởi nước (làm tròn đến hai chữ số thập phân, lấy π = 3,14). + Cho nửa đường tròn tâm O đường kính AB R 2 và C D là hai điểm di động trên nửa đường tròn sao cho C thuộc cung AD và COD = 60 (C AD B). Gọi M là giao điểm của tia AC và BD, N là giao điểm của AD và BC. Gọi H và I lần lượt là trung điểm của CD và MN. a) Chứng minh tứ giác CMDN nội tiếp. b) Kẻ AP CD BQ CD P Q CD. Chứng minh CP DQ và AP BQ R 3. c) Chứng minh rằng ba điểm H I và O thẳng hàng. Tìm giá trị lớn nhất của diện tích tam giác MCD theo R khi C D di chuyển trên nửa đường tròn thỏa mãn điều kiện đề bài.
Đề khảo sát Toán 9 năm 2020 - 2021 trường THCS Ngô Sĩ Liên - Hà Nội
Thứ Hai ngày 31 tháng 05 năm 2021, trường THCS Ngô Sĩ Liên, quận Hoàn Kiếm, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng (viết tắt: KSCL) môn Toán lớp 9 năm học 2020 – 2021, nhằm giúp các em học sinh lớp 9 rèn luyện để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2021 – 2022 do sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức. Đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Ngô Sĩ Liên – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Ngô Sĩ Liên – Hà Nội : + Cho đường tròn (O) đường kính AB, lấy C thuộc đường tròn (O) sao cho AC < CB. Kẻ đường kính CD. Tiếp tuyến tại A và tiếp tuyến C của đường tròn (O) cắt nhau tai E. Tiếp tuyến tại C và tiếp tuyến B của đường tròn (O) cắt nhau tai F. 1) Chứng minh bốn điểm O, A, E, C thuộc một đường tròn. 2) Chứng minh EO // CB. 3) Đoạn thẳng DF cắt đường tròn (O) tại J. Đường thẳng AJ cắt đường thẳng BC tại điểm H và cắt đường thẳng DC tại điểm G. Chứng minh G là trọng tâm của tam giác ABC. + Với a, b, c là độ dài ba cạnh của một tam giác có chu vi bằng 2. Chứng minh rằng: ab bc ca 1. + Cho parabol 2 P y x và đường thẳng 2 d y mx m. a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của tham số m. b) Gọi giao điểm của (d) và (P) là 𝐴(𝑥𝐴; 𝑦𝐴),𝐵(𝑥𝐵; 𝑦𝐵). Hãy các xác định giá trị của m để yA + yB < -6.
Đề khảo sát chất lượng Toán 9 lần 3 năm 2021 trường THCS Phương Liệt - Hà Nội
  Nhằm chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2021 – 2022 do sở GD&ĐT Hà Nội tổ chức, thứ Bảy ngày 29 tháng 05 năm 2021, trường THCS Phương Liệt, quận Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021 lần thứ ba. Đề khảo sát chất lượng Toán 9 lần 3 năm 2021 trường THCS Phương Liệt – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát chất lượng Toán 9 lần 3 năm 2021 trường THCS Phương Liệt – Hà Nội : + Cho hàm số y m x 1 3 m 1 có đồ thị là đường thẳng (d). a) Tìm m để đường thẳng (d) đi qua điểm M(1; 4). Với m vừa tìm được, hãy cho biết đường thẳng (d) có song song với đường thẳng y x 1 không? Vì sao? b) Tìm tất cả các giá trị m để đường thẳng (d) tiếp xúc với đường tròn (O; 1) trong đó O là gốc tọa độ. + Cho nửa đường tròn tâm (O), đường kính AB = 2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K bất kì thuộc cung AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BI cắt nửa tròn tại điểm E. 1) Chứng minh tứ giác BHIC nội tiếp. 2) Chứng minh AI.AC = AH. AB và tổng AI.AC + BI.BE không đổi. 3) Chứng minh HE vuông góc với CE và tâm đường tròn ngoại tiếp tam giác CEH nằm trên đường thẳng cố định khi K di động trên cung AC. + Với a, b, c là các số dương thỏa mãn điều kiện abc 3. Tìm giá trị lớn nhất của biểu thức Q a bc b ca c a.
Đề khảo sát Toán 9 tháng 5 năm 2021 trường THCS Ngọc Lâm - Hà Nội
Đề khảo sát Toán 9 tháng 5 năm 2021 trường THCS Ngọc Lâm – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút.