Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Thuận Thành 1 Bắc Ninh

Nội dung Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Thuận Thành 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi có đáp án trắc nghiệm mã đề 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118. Trích dẫn Đề khảo sát lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Thuận Thành 1 – Bắc Ninh : + Một doanh nghiệp tư nhân A chuyên kinh doanh xe máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Hon đa Lead 2024 Smartkey bản đen mờ với chi phí mua vào một chiếc là 37 triệu đồng và bán ra là 41 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một tháng là 60 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một tháng sẽ tăng thêm 20 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. + Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bày trên 1 pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD có kích thước AB = 2m, AD = 3m, phần còn lại sẽ được trang trí hoa văn cho phù hợp và pano được đặt sao cho cạnh CD tiếp xúc với mặt đất. Hỏi vị trí cao nhất của pano so với mặt đất là bao nhiêu? + Trong một cuộc thi gói bánh vào dịp năm mới, mỗi đội chơi được sử dụng tối đa 20 kg gạo nếp, 2 kg thịt ba chỉ, 5 kg đậu xanh để gói bánh chưng và bánh ống. Để gói một cái bánh chưng cần 0,4 kg gạo nếp, 0,05 kg thịt và 0,1 kg đậu xanh; để gói một cái bánh ống cần 0,6 kg gạo nếp, 0,075 kg thịt và 0,15 kg đậu xanh. Mỗi cái bánh chưng nhận được 5 điểm thưởng, mỗi cái bánh ống nhận được 7 điểm thưởng. Hỏi điểm thưởng cao nhất có thể đạt được là bao nhiêu?

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic lớp 10 môn Toán năm học 2019 2020 cụm Sóc Sơn Mê Linh Hà Nội
Nội dung Đề thi Olympic lớp 10 môn Toán năm học 2019 2020 cụm Sóc Sơn Mê Linh Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội Đề thi Olympic Toán lớp 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi Olympic Toán lớp 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút, và đề thi đi kèm lời giải chi tiết. Trích dẫn đề thi Olympic Toán lớp 10 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội: 1. Một người có một khu đất bãi rộng dọc theo bờ sông. Người đó muốn làm một hàng rào hình chữa E để chia khu đất thành hai phần để trồng rau và chăn nuôi. Để tính toán chi phí, nguyên vật liệu đối với hàng rào song song với bờ sông là 80000 đồng/mét, đối với phần còn lại là 40000 đồng/mét. Hỏi diện tích lớn nhất của phần đất mà người đó rào được với chi phí vật liệu 20 triệu đồng. 2. Trong mặt phẳng tọa độ Oxy, hình thang ABCD vuông tại A và D(2;2), CD = 2AB. Gọi H là hình chiếu của D lên cạnh AC và M là trung điểm của HC. Phương trình đường thẳng DH và BM lần lượt là 2x + y - 6 = 0 và 4x + 7y - 61 = 0. Yêu cầu tìm tọa độ các đỉnh A, B, C của hình thang. 3. Cho tam giác ABC và điểm O bất kỳ trong tam giác. Gọi M, N, P lần lượt là hình chiếu của O lên các cạnh BC, AC, AB. Chứng minh rằng BC/OM + AC/ON + AB/OP ≥ 2p/r, trong đó p là nửa chu vi và r là bán kính đường tròn nội tiếp tam giác ABC.
Đề thi chọn HSG lớp 10 môn Toán năm học 2019 2020 trường THPT thị xã Quảng Trị
Nội dung Đề thi chọn HSG lớp 10 môn Toán năm học 2019 2020 trường THPT thị xã Quảng Trị Bản PDF - Nội dung bài viết Đề Thi Chọn Học Sinh Giỏi Toán Lớp 10 Trường THPT Thị Xã Quảng Trị Đề Thi Chọn Học Sinh Giỏi Toán Lớp 10 Trường THPT Thị Xã Quảng Trị Ngày 12 tháng 06 năm 2020, trường THPT thị xã Quảng Trị đã tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 10 môn Toán năm học 2019 – 2020. Đề thi bao gồm 07 bài toán dạng tự luận, với thời gian làm bài là 180 phút. Đề thi không chỉ có câu hỏi mà còn có lời giải chi tiết và thang điểm để học sinh tham khảo. Một trong những câu hỏi đáng chú ý của đề là: "Cho tam giác ABC có chu vi bằng 20, góc BAC = 60 độ, bán kính đường tròn nội tiếp tam giác bằng 3. Gọi A1, B1, C1 là hình chiếu vuông góc của A, B, C lên BC, CA, AB và M là điểm nằm trong tam giác ABC thỏa mãn ABM = BCM = CAM = φ. Tính cot φ và bán kính đường tròn ngoại tiếp tam giác A1B1C1." Câu hỏi khác như sau: "Cho tam giác ABC có trọng tâm G và điểm E thỏa mãn BE + 3EC = 0. Gọi I là giao điểm của AC và GE, tính tỉ số IA/IC." và "Trong mặt phẳng tọa độ Oxy, hình chữ nhật ABCD có phương trình đường thẳng AB là x – 2y + 1 = 0. Biết đường thẳng BD là x – 7y + 14 = 0 và đường thẳng AC đi qua điểm M(2;1). Hãy tìm tọa độ các đỉnh của hình chữ nhật ABCD." Đề thi chọn HSG Toán lớp 10 trường THPT thị xã Quảng Trị không chỉ giúp học sinh ôn tập kiến thức mà còn đánh giá khả năng làm bài và tư duy logic của học sinh. Chúc các em học sinh đạt kết quả cao trong kỳ thi này!
Đề thi chọn HSG lớp 10 môn Toán năm 2019 2020 trường THPT Trần Phú Hà Tĩnh
Nội dung Đề thi chọn HSG lớp 10 môn Toán năm 2019 2020 trường THPT Trần Phú Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi chọn HSG lớp 10 môn Toán năm 2019-2020 Trường THPT Trần Phú Hà Tĩnh Đề thi chọn HSG lớp 10 môn Toán năm 2019-2020 Trường THPT Trần Phú Hà Tĩnh Trong năm học 2019-2020, Trường THPT Trần Phú - Hà Tĩnh đã tổ chức kỳ thi chọn học sinh giỏi Toán lớp 10 để tuyển chọn những em học sinh có thành tích xuất sắc vào đội tuyển học sinh giỏi Toán của nhà trường. Đề thi chọn HSG Toán lớp 10 năm 2019-2020 được biên soạn trong hình thức tự luận, bao gồm 5 bài toán trên 1 trang với thời gian làm bài là 120 phút. Lời giải chi tiết được biên soạn bởi nhóm Toán VD - VDC của trường. Một số câu hỏi trong đề thi gồm: - Cho hàm số y = (m - 2)x^2 - 2(m - 1)x + m + 2 (trong đó m là tham số). Yêu cầu: Xác định giá trị của m để đồ thị hàm số là một đường parabol có tung độ đỉnh bằng 3m, và tìm giá trị của m để hàm số là nghịch biến trên khoảng (-∞;2). - Trong hệ tọa độ Oxy, cho hình thang ABCD có các tọa độ điểm A(-2;-2), B(0;4) và C(7;3).Yêu cầu: Tìm tọa độ điểm E để thỏa mãn điều kiện EA + EB + 2EC = 0, tìm giá trị nhỏ nhất của |PA + PB + 2PC| với P là điểm di động trên trục hoành, và tìm tọa độ đỉnh D của hình thang ABCD nếu diện tích hình thang gấp 3 lần diện tích tam giác MBC. - Cho tam giác ABC đều cạnh 3a, điểm M trên BC, điểm N trên CA sao cho BM = a, CN = 2a. Yêu cầu: Tìm tích vô hướng AM.BC theo a, tính độ dài của PN nếu AM vuông góc với PN. Đề thi chọn HSG Toán lớp 10 năm 2019-2020 Trường THPT Trần Phú Hà Tĩnh mang đến cho các em học sinh cơ hội thể hiện kiến thức và khả năng giải quyết bài toán hiệu quả, từ đó chinh phục được những vấn đề khó trong môn Toán. Chúc các em thành công!
Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường Nguyễn Đức Cảnh Thái Bình
Nội dung Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường Nguyễn Đức Cảnh Thái Bình Bản PDF Đề thi HSG Toán lớp 10 năm 2018 – 2019 trường Nguyễn Đức Cảnh – Thái Bình là bài thi đặc biệt dành cho những học sinh có kiến thức vững chắc và khả năng giải quyết bài toán tốt. Đề thi gồm 20 câu hỏi và bài toán trắc nghiệm (chiếm 6 điểm) và 3 bài toán tự luận (chiếm 4 điểm), thời gian làm bài 90 phút.Một trong những bài toán đặc biệt trong đề thi là về việc 4 người đàn ông cần phải qua một cây cầu trong đêm tối, nhưng chỉ có một cây đuốc. Mỗi lượt chỉ được 2 người qua cầu và thời gian để mỗi người qua cầu không giống nhau (A – 1 phút, B – 2 phút, C – 7 phút, D – 10 phút). Hỏi thời gian ngắn nhất để 4 người qua cầu là bao lâu?Bài toán khác là về việc Bác Thùy muốn trồng đậu và cà trên diện tích 8a. Nếu trồng đậu, cần 20 công và thu lãi 3.000.000 đồng trên mỗi a, trồng cà cần 30 công và thu lãi 4.000.000 đồng trên mỗi a. Biết tổng số công không vượt quá 180, hãy tính số tiền lãi lớn nhất thu được.Ngoài ra, còn có bài toán về hàm số y = f(x) và các hàm số F(x) = 1/2[f(x) + f(-x)] và G(x) = 1/2[f(x) – f(-x)]. Phải xác định đúng những khẳng định nào về tính chất của F(x) và G(x).Đề thi này không chỉ là cơ hội để học sinh thể hiện khả năng giải bài toán mà còn là bước đệm quan trọng để chọn ra những em học sinh giỏi môn Toán vào đội tuyển HSG của trường. Qua đó, giúp các em phát huy tối đa khả năng và tiềm năng của mình trong môn học này.