Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề so sánh phân số

Tài liệu gồm 29 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề so sánh phân số, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . So sánh hai phân số cùng mẫu dương. Trong hai phân số có cùng mẫu dương, phân số nào có tử lớn hơn thì lớn hơn. Dạng 2 . So sánh hai phân số khác mẫu. Cách 1. Quy đồng mẫu số hai phân số rồi so sánh các tử số của chúng. – Bước 1: Quy đồng mẫu số của hai phân số (đưa các phân số về cùng mẫu số). – Bước 2: So sánh tử số của hai phân số cùng mẫu số đã quy đồng. Trong hai phân số có cùng mẫu số: + Phân số nào có tử số nhỏ hơn thì nhỏ hơn. + Phân số nào có tử số lớn hơn thì lớn hơn. Cách 2. Quy đồng tử số hai phân số rồi so sánh các mẫu số của chúng. – Bước 1: Quy đồng tử số (đưa về cùng tử số). + Lấy tử số và mẫu số của phân số thứ nhất nhân tử số của phân số thứ hai. + Lấy tử số và mẫu số của phân số thứ hai nhân tử số của phân số thứ nhất. – Bước 2: So sánh mẫu số của hai phân số đã quy đồng tử số. Trong hai phân số có cùng tử số: + Phân số nào có mẫu số nhỏ hơn thì lớn hơn. + Phân số nào có mẫu số lớn hơn thì nhỏ hơn. Dạng 3 . So sánh qua số trung gian. – Khi so sánh hai hay nhiều phân số, việc quy đồng đưa về cùng một mẫu số dương để so sánh tử số nhiều khi khá khó khăn, do đó, ta có thể chọn một phân số trung gian, dựa vào phân số trung gian này, ta sẽ so sánh được hai phân số ban đầu. * Dạng 3.1: So sánh qua số 0. * Dạng 3.2: So sánh qua số 1. * Dạng 3.3: So sánh qua một phân số trung gian phù hợp. Dạng 4 . So sánh qua phần bù (hay phần thiếu). So sánh qua phần bù áp dụng để so sánh hai phân số nhỏ hơn 1. Với phân số 1 a b thì 1 a b a b b được gọi là phần bù đến đơn vị của phân số a b. Trong hai phân số có phần bù tới đơn vị khác nhau, phân số nào có phần bù nhỏ hơn thì phân số đó lớn hơn. Dạng 5 . So sánh phần hơn (phần thừa) với đơn vị của các phân số. * Phần hơn với đơn vị của phân số là hiệu giữa phân số đó với 1. * Sử dụng cách so sánh bằng phần hơn khi: – Nhận thấy tất cả các phân số đều có tử số lớn hơn mẫu số (phân số lớn hơn 1) và hiệu của tử số với mẫu số đều bằng nhau hoặc nhỏ thì ta tìm phần hơn với 1. – Nhận thấy cả hai phân số đều có tử số lớn hơn mẩu số và nếu lấy tử số chia cho mầu số ở cả hai phân số thì có thương bằng nhau. – Nhận thấy cả hai phân số đều có tử số bé hơn mẫu số và nếu lấy mẫu số chia cho tử số ở cả hai phân số thì có thương bằng nhau. Dạng 6 . So sánh một tổng hoặc một tích nhiều phân số với một phân số. Bước 1: Tìm số chữ số của tổng. Bước 2: Tách số cố định thành tổng các chữ số. Bước 3: So sánh từng số của tổng với các chữ số vừa tách. Bước 4: Kết luận. Dạng 7 . Dạng bài tập phối hợp nhiều phương pháp. * Phương pháp so sánh hai phân số bằng cách “nhân thêm cùng một số vào hai phân số”: Ta sử dụng phương pháp nhân thêm cùng một số vào hai phân số khi nhận thấy tử số của hai phân số đều bé hơn mẫu số và nểu lấy mẫu số chia cho tử số thì có thương và số dư bằng nhau. Khi đó ta nhân cả hai phân số với cùng một số tự nhiên (là phần nguyên của thương) để đưa về dạng so sánh “phần bù”.

Nguồn: toanmath.com

Đọc Sách

Phân dạng và bài tập phân số lớp 6 môn Toán Kết Nối Tri Thức Với Cuộc Sống
Nội dung Phân dạng và bài tập phân số lớp 6 môn Toán Kết Nối Tri Thức Với Cuộc Sống Bản PDF - Nội dung bài viết Phân Dạng và Bài Tập Phân Số Lớp 6 Môn Toán Phân Dạng và Bài Tập Phân Số Lớp 6 Môn Toán Tài liệu này bao gồm 180 trang, đã được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi. Nội dung chủ yếu xoay quanh phân dạng và bài tập chuyên đề về phân số trong chương trình môn Toán lớp 6 theo bộ sách "Kết Nối Tri Thức Với Cuộc Sống". Chương 6 của sách tập trung vào phân số, với bài số 23 mở rộng khái niệm về phân số và phân số bằng nhau. Các kiến thức cần nhớ và kỹ năng giải bài toán được tập trung trong các dạng nhận biết phân số, viết phân số, biểu thị số đo dưới dạng phân số, tìm điều kiện cho phân số, và nhiều dạng bài tập khác. Bài tập 24 tập trung vào so sánh phân số và hỗn số dương. Các dạng bài tập bao gồm tìm mẫu chung nhỏ nhất, quy đồng mẫu số, so sánh phân số, viết phân số dưới dạng hỗn số và ngược lại. Bài số 25 và 26 tiếp tục với phép cộng, trừ, nhân và chia phân số. Các kỹ năng giải toán bao gồm thực hiện các phép toán này, tìm số chưa biết trong đẳng thức, và các bài toán có lời văn. Bài số 27 tập trung vào hai bài toán khác nhau về phân số, trong đó học sinh được yêu cầu áp dụng kiến thức đã học để giải quyết các vấn đề cụ thể. Cuối cùng, ôn tập chương VI và VII giúp học sinh tổng kết kiến thức và thực hành các bài tập đa dạng. Đề kiểm tra cuối chương cung cấp cơ hội cho học sinh tự kiểm tra kiến thức của mình sau khi học xong chương. Tài liệu này cung cấp một cách tổng quan và cụ thể về chủ đề phân số, giúp học sinh hiểu và ứng dụng kiến thức một cách linh hoạt trong các bài tập thực hành.
Chuyên đề tính tổng dãy số có quy luật
Nội dung Chuyên đề tính tổng dãy số có quy luật Bản PDF - Nội dung bài viết Sản phẩm: Chuyên đề tính tổng dãy số có quy luậtA. TRỌNG TÂM CẦN ĐẠTB. BÀI TOÁN THƯỜNG GẶP TRONG TÀI LIỆU Sản phẩm: Chuyên đề tính tổng dãy số có quy luật Tài liệu này bao gồm 103 trang, trong đó trình bày những kiến thức trọng tâm cần đạt và hướng dẫn giải các dạng toán liên quan đến tính tổng dãy số có quy luật. Đặc biệt, tài liệu này tuyển chọn các bài tập chuyên đề, các bài tập này có đáp án và lời giải chi tiết. Đây là tài liệu hỗ trợ cho học sinh lớp 6 trong việc ôn tập và thi học sinh giỏi môn Toán. A. TRỌNG TÂM CẦN ĐẠT Dạng 1: Tính tổng các số hạng cách đều S = a1 + a2 + a3 + ... + an. Dạng 2: Tính tổng có dạng S = 1 + a + a2 + a3 + ... + an. Dạng 3: Tính tổng có dạng S = 1 + a2 + a4 + a6 + ... + a2n. Dạng 4: Tính tổng có dạng S = a + a3 + a5 + a7 + ... + a2n + 1. Dạng 5: Tính tổng có dạng S = 1.2 + 2.3 + 3.4 + 4.5 + ... + n(n + 1). Dạng 6: Tính tổng có dạng S = 12 + 22 + 32 + 42 + ... + n2. Dạng 7: Tính tổng có dạng S = 12 + 32 + 52 + ... + (2k + 1)2. Dạng 8: Tính tổng có dạng S = 22 + 42 + 62 + ... + (2k)2. Dạng 9: Tính tổng có dạng S = a1.a2 + a2.a3 + a3.a4 + ... + an.an+1. Dạng 10: Tính tổng có dạng S = a1.a2.a3 + a2.a3.a4 + a3.a4.a5 + ... + an.an+1.an+2. Dạng 11: Tính tổng có dạng S = 1 + 23 + 33 + ... + n3. Dạng 12: Liên phân số. B. BÀI TOÁN THƯỜNG GẶP TRONG TÀI LIỆU Tài liệu này cũng cung cấp một số bài toán thường gặp trong việc tính tổng dãy số có quy luật. Những bài toán này giúp học sinh nắm vững kiến thức và áp dụng vào thực tế. Tài liệu này đã được biên soạn một cách chi tiết và cụ thể, nhằm giúp người đọc dễ hiểu và áp dụng kiến thức vào thực hành. Bên cạnh đó, phong phú về sắc thái và biểu cảm giúp người đọc có sự gắn kết và tương tác tốt với nội dung. Dựa vào nội dung trên, tài liệu này tập trung vào việc giúp học sinh lớp 6 ôn tập và nắm vững kiến thức về tính tổng dãy số có quy luật. Đồng thời, tài liệu cũng mang tính ứng dụng cao trong việc giải các bài toán thực tế. Tài liệu này đáp ứng đầy đủ yêu cầu và nhu cầu của học sinh lớp 6, đặc biệt là trong quá trình ôn tập và thi học sinh giỏi môn Toán.
Chuyên đề so sánh
Nội dung Chuyên đề so sánh Bản PDF Một sản phẩm chuyên đề đã được thiết kế để hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán. Tài liệu này bao gồm 105 trang, được trình bày để giúp học sinh nắm vững kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề so sánh. Nội dung được cung cấp với đáp án và lời giải chi tiết để học sinh có thể tự luyện tập.Chủ đề đầu tiên trong tài liệu là "So sánh lũy thừa". Nội dung bao gồm kiến thức cần nhớ và các dạng toán liên quan đến so sánh lũy thừa. Các dạng toán bao gồm so sánh hai số lũy thừa, so sánh biểu thức lũy thừa với một số, từ việc so sánh lũy thừa tìm cơ số chưa biết và một số bài toán khác.Chủ đề thứ hai trong tài liệu là "So sánh phân số". Nội dung bao gồm tóm tắt lý thuyết và các dạng toán liên quan đến so sánh phân số. Cung cấp nhiều phương pháp khác nhau để giúp học sinh tiếp cận vấn đề, bao gồm quy đồng mẫu dương, quy đồng tử dương, tích chéo với các mẫu dương, sử dụng số hoặc phân số làm trung gian, dùng tính chất và đổi phân số lớn hơn đơn vị ra hỗn số để so sánh.Cuối cùng, tài liệu cung cấp các bài tập tổng hợp để học sinh có thể ôn tập và kiểm tra kiến thức của mình.Tóm lại, sản phẩm chuyên đề này là một nguồn tài liệu hữu ích và cần thiết cho học sinh lớp 6 trong việc ôn tập và chuẩn bị cho kỳ thi học sinh giỏi môn Toán. Nội dung được trình bày một cách chi tiết, dễ hiểu và có đáp án cụ thể, giúp học sinh tự tin và hiệu quả trong quá trình học tập.