Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập môn Toán 9 tập 1 - Trần Công Dũng

Tài liệu gồm 59 trang, được biên soạn bởi thầy giáo Trần Công Dũng, bao gồm tóm tắt lý thuyết, phương pháp giải toán và bài tập luyện tập môn Toán 9 tập 1, theo định hướng đề thi của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. MỤC LỤC : Chương 1 Căn bậc hai, căn bậc ba 3. A Căn bậc hai 3. I Tóm tắt lý thuyết 3. II Phương pháp giải toán 3. B Căn thức bậc hai và hằng đẳng thức √A2 = |A| 5. I Tóm tắt lí thuyết 5. II Phương pháp giải toán 5. + Dạng 1. Điều kiện để √A có nghĩa 5. + Dạng 2. Sử dụng hằng đẳng thức √A2 = |A| 5. + Dạng 3. Giải phương trình 6. III Bài tập tự luyện và nâng cao 6. C Liên hệ giữa phép nhân, phép chia và phép khai phương 8. I Tóm tắt lí thuyết 8. II Các dạng toán 8. III Bài tập tự luyện và nâng cao 9. D Biến đổi đơn giản và rút gọn biểu thức chứa căn bậc hai 10. I Tóm tắt lí thuyết 10. II Các dạng toán 10. + Dạng 1. Đưa thừa số ra ngoài dấu căn, đưa thừa số vào bên trong dấu căn 10. + Dạng 2. Khử mẫu của biểu thức dưới dấu căn – Phép nhân liên hợp 11. III Bài tập rèn luyện 12. E Bài tập ôn chương 1 15. + Dạng 1. Rút gọn biểu thức số 15. + Dạng 2. Giải phương trình chứa căn thức đơn giản 16. + Dạng 3. Rút gọn biểu thức chứa căn thức 17. Chương 2 HÀM SỐ BẬC NHẤT 21. A Nhắc lại và bổ sung khái niệm về hàm số 21. I Tóm tắt lí thuyết 21. II Các dạng toán 21. + Dạng 1. Tìm giá trị của hàm số, biến số 21. + Dạng 2. Toán thực tế về hàm số 22. B Hàm số bậc nhất 24. I Tóm tắt lý thuyết 24. II Phương pháp giải toán 24. III Bài tập luyện tập 25. C Tương giao hai đường thẳng 27. I Tóm tắt lí thuyết 27. II Phương pháp giải toán 27. III Bài tập luyện tập 28. D Hệ số góc của đường thẳng 29. I Tóm tắt lí thuyết 29. II Phương pháp giải toán 29. + Dạng 1. Hệ số góc của đường thẳng 30. + Dạng 2. Lập phương trình đường thẳng biết hệ số góc 30. III Bài tập tự luyện 31. E Bài tập ôn chương 2 31. Chương 1 HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG 37. A Một số hệ thức về cạnh và đường cao của tam giác vuông 37. I Tóm tắt lí thuyết 37. II Phương pháp giải toán 37. + Dạng 1. Giải các bài toán định lượng 38. + Dạng 2. Giải các bài toán định tính 38. III Bài tập tự luyện 39. B Tỉ số lượng giác 41. I Tóm tắt lí thuyết 41. II Phương pháp giải toán 41. III Bài tập tự luyện 41. C Ứng dụng thực tế hệ thức lượng trong tam giác vuông 43. Chương 2 ĐƯỜNG TRÒN 49. A Sự xác định đường tròn 49. I Tóm tắt lí thuyết 49. B Đường kính và dây của đường tròn 50. C Liên hệ giữa dây và khoảng cách từ tâm đến dây 50. I Bài tập rèn luyện 50. D Vị trí tương đối giữa đường thẳng và đường tròn – Dấu hiệu nhận biết đường tròn 52. I Tóm tắt lí thuyết 52.

Nguồn: toanmath.com

Đọc Sách

Giải bài toán bằng cách lập phương trình hệ phương trình
Nội dung Giải bài toán bằng cách lập phương trình hệ phương trình Bản PDF - Nội dung bài viết Hướng dẫn giải bài toán bằng cách lập phương trình - hệ phương trình Hướng dẫn giải bài toán bằng cách lập phương trình - hệ phương trình Tài liệu này bao gồm 76 trang, dành cho học sinh lớp 9 để tham khảo khi học chương trình. Nó cung cấp phương pháp giải bài toán bằng cách lập phương trình - hệ phương trình, giúp học sinh hiểu rõ hơn về cách làm và giải quyết bài toán một cách chính xác. Với nội dung chi tiết và dễ hiểu, tài liệu này sẽ giúp học sinh tự tin hơn khi giải các bài toán liên quan đến phương trình và hệ phương trình.
Hàm số, đồ thị và sự tương giao Dương Minh Hùng
Nội dung Hàm số, đồ thị và sự tương giao Dương Minh Hùng Bản PDF - Nội dung bài viết Sản phẩm Hàm số, đồ thị và sự tương giao Dương Minh Hùng Sản phẩm Hàm số, đồ thị và sự tương giao Dương Minh Hùng Tài liệu này được sắp xếp thành 28 trang bởi thầy giáo Dương Minh Hùng, để giúp các học sinh lớp 9 hiểu rõ về chủ đề hàm số, đồ thị và sự tương giao trong môn Toán. Tài liệu bao gồm: A. Tóm tắt lý thuyết I. Hàm số bậc nhất: Khái niệm hàm số bậc nhất và các tính chất. Đồ thị của hàm số y = ax + b (a khác 0) và cách vẽ đồ thị. Vị trí tương đối của hai đường thẳng. Hệ số góc của đường thẳng y = ax + b. Một số phương trình đường thẳng đặc biệt. II. Hàm số bậc hai: Khái niệm hàm số bậc hai và các tính chất. Đồ thị của hàm số y = ax2 (a khác 0) và cách vẽ đồ thị. Quan hệ giữa Parabol y = ax2 (a khác 0) và đường thẳng y = mx + n (m khác 0). B. Phân dạng toán cơ bản 1. Dạng Toán lớp 1: Vẽ đồ thị hàm số. 2. Dạng Toán lớp 2: Tìm tọa độ giao điểm của đường thẳng và Parabol. 3. Dạng Toán lớp 3: Tìm phương trình đường thẳng, phương trình Parabol. 4. Dạng Toán lớp 4: Tìm điều kiện của tham số m thỏa mãn yêu cầu cho trước. C. Bài tập rèn luyện Tài liệu này cung cấp các bài tập rèn luyện để học sinh có cơ hội luyện tập và áp dụng kiến thức đã học. Qua tài liệu này, học sinh sẽ được hướng dẫn chi tiết và dễ hiểu về hàm số, đồ thị và sự tương giao trong môn Toán, từ đó có thể áp dụng vào việc ôn thi và nâng cao kiến thức môn Toán của mình.
Phương trình bậc hai, hệ thức Vi-ét và ứng dụng Dương Minh Hùng
Nội dung Phương trình bậc hai, hệ thức Vi-ét và ứng dụng Dương Minh Hùng Bản PDF - Nội dung bài viết Phương trình bậc hai, hệ thức Vi-ét và ứng dụng Dương Minh Hùng Phương trình bậc hai, hệ thức Vi-ét và ứng dụng Dương Minh Hùng Tài liệu "Phương trình bậc hai, hệ thức Vi-ét và ứng dụng" được biên soạn bởi thầy giáo Dương Minh Hùng và bao gồm 26 trang. Trong tài liệu này, thầy giáo Hùng phân dạng và hướng dẫn giải các dạng toán liên quan đến phương trình bậc hai, hệ thức Vi-ét và các ứng dụng của chúng. Đây là tài liệu rất hữu ích cho học sinh lớp 9 khi học chương trình Toán lớp 9 và ôn thi vào lớp 10 môn Toán. Trong tài liệu, các nội dung chính bao gồm: Tóm tắt lý thuyết: Công thức nghiệm của phương trình bậc hai. Công thức nghiệm thu gọn và dễ áp dụng. Định lí Vi-ét và cách áp dụng vào giải phương trình. Ứng dụng Vi-ét trong nhận biết phương trình đặc biệt. Các ứng dụng của Vi-ét trong giải toán chứa tham số. Phân dạng toán cơ bản: Dạng 1: Giải phương trình quy về bậc nhất. Dạng 2: Giải phương trình bậc hai theo công thức nghiệm. Dạng 3: Tính giá trị của biểu thức nghiệm bằng hệ thức Vi-ét. Dạng 4: Giải toán có tham số mà áp dụng định lí Vi-ét. Bài tập rèn luyện: Tài liệu cũng cung cấp các bài tập rèn luyện để học sinh tự rèn luyện và kiểm tra kiến thức của mình sau khi học lý thuyết. Cùng với sự hướng dẫn cụ thể và dễ hiểu từ thầy giáo Dương Minh Hùng, tài liệu này sẽ giúp học sinh nắm vững kiến thức về phương trình bậc hai, hệ thức Vi-ét và ứng dụng của chúng, từ đó có thể tự tin hơn trong việc làm bài tập và ôn thi. Mục tiêu cuối cùng là giúp học sinh đạt kết quả tốt trong môn Toán và phát triển khả năng tư duy logic.
Các phép toán về căn thức Dương Minh Hùng
Nội dung Các phép toán về căn thức Dương Minh Hùng Bản PDF - Nội dung bài viết Các phép toán về căn thức Dương Minh Hùng Các phép toán về căn thức Dương Minh Hùng Tài liệu này được biên soạn bởi thầy giáo Dương Minh Hùng, với mục đích phân dạng và hướng dẫn giải các dạng toán về căn thức. Tài liệu gồm 19 trang, phù hợp cho học sinh lớp 9 tham khảo khi học chương trình Toán lớp 9 và ôn thi vào lớp 10 môn Toán. Bài giảng được chia thành ba phần chính: A. Tóm tắt lý thuyết: Căn bậc hai số học. Liên hệ giữa phép nhân với phép khai phương. Liên hệ giữa phép chia với phép khai phương. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. B. Phân dạng toán cơ bản: Tập trung vào cách giải các dạng toán căn thức cơ bản như: Tìm điều kiện để biểu thức có chứa căn thức có nghĩa. Tính giá trị biểu thức chứa căn. Rút gọn biểu thức chứa căn. Rút gọn và tính giá trị biểu thức chứa căn. C. Bài tập rèn luyện: Nhằm giúp học sinh luyện tập và củng cố kiến thức về căn thức thông qua việc giải các bài tập thực hành. Chắc chắn rằng tài liệu này sẽ hỗ trợ học sinh trong việc hiểu và áp dụng các kiến thức liên quan đến căn thức một cách hiệu quả.