Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GDĐT

Tài liệu gồm 198 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Toán, phân loại và hướng dẫn giải các câu hỏi và bài toán trong đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo. Mục lục tài liệu toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GD&ĐT: 1. PHÉP ĐẾM (QUY TẮC CỘNG – QUY TẮC NHÂN). 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. 2.1 Đếm số (chỉ dùng một loại P hoặc A hoặc C). 2.2 Chọn người, vật. 3. XÁC SUẤT. 4. CẤP SỐ CỘNG. 5. CẤP SỐ NHÂN. 6. ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG. 6.1 Góc giữa đường thẳng và mặt phẳng. 6.2 Góc giữa đường thẳng và mặt phẳng. 7. KHOẢNG CÁCH. 7.1 Từ chân H của đường cao đến mặt phẳng cắt đường cao. 7.2 Từ điểm M (khác H) đến mặt phẳng cắt đường cao. 7.3 Hai đường chéo nhau (vẽ đoạn vuông góc chung). 7.4 Hai đường chéo nhau (mượn mặt phẳng). 8. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ. 8.1 Xét tính đơn điệu của hàm số (biết đồ thị, bảng biến thiên của y). 8.2 Điều kiện để hàm số bậc ba đơn điệu trên khoảng K. 8.3 Điều kiện để hàm số nhất biến đơn điệu trên khoảng K. 8.4 Đơn điệu liên quan hàm hợp, hàm ẩn. 8.5 Ứng dụng tính đơn điệu vào PT – BPT – HPT – BĐT. 9. CỰC TRỊ CỦA HÀM SỐ. 9.1 Tìm cực trị của hàm số cho bởi công thức của y, y’. 9.2 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng biến thiên của y). 9.3 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng xét dấu của y’). 9.4 Cực trị liên quan hàm hợp, hàm ẩn. 9.5 Cực trị liên quan hàm chứa dấu giá trị tuyệt đối. 10. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ. 10.1 GTLN – GTNN của f(x) trên đoạn [a;b] biết biểu thức f(x). 10.2 Tìm m để hàm số f(x) có GTLN – GTNN thỏa mãn điều kiện cho trước. 10.3 GTLN – GTNN hàm nhiều biến dạng khác. 11. TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ. 11.1 Tiệm cận đồ thị hàm số phân thức hữu tỷ, không chứa tham số. 11.2 Tiệm cận đồ thị hàm số f(x) dựa vào bảng biến thiên không tham số. 12. ĐỌC ĐỒ THỊ – BIẾN ĐỔI ĐỒ THỊ. 12.1 Nhận dạng các hàm số thường gặp (biết đồ thị, bảng biến thiên). 12.2 Xét dấu hệ số của biểu thức (biết đồ thị, bảng biến thiên). 12.3 Đọc đồ thị của đạo hàm (các cấp. 12. TƯƠNG GIAO CỦA HAI ĐỒ THỊ. 12.1 Tìm toạ độ (đếm) giao điểm. 12.2 Đếm số nghiệm phương trình cụ thể (cho đồ thị, bảng biến thiên). 12.3 Tương giao liên quan hàm hợp, hàm ẩn. 12.4 Điều kiện để f(x) = g(m) có n nghiệm (chứa GTTĐ). 12.5 Điều kiện để f(x) = g(m) có n nghiệm thuộc K (không GTTĐ). 13. MŨ – LŨY THỪA. 13.1 Kiểm tra quy tắc biến đổi lũy thừa, tính chất. 13.2 Tính toán, rút gọn các biểu thức có chứa biến(a, b, c, x, y, . . .). 14. LOGARIT. 14.1 Câu hỏi lý thuyết và tính chất. 14.2 Biến đổi các biểu thức logarit liên quan a, b, x, y. 14.3 Tính giá trị các biểu thức logarit không dùng BĐT. 14.4 Dạng toán khác về logarit. 15. HÀM SỐ MŨ – LOGARIT. 15.1 Tập xác định liên quan hàm số mũ, hàm số logarit. 15.2 Đạo hàm liên quan hàm số mũ, hàm số logarit. 15.3 Đồ thị liên quan hàm số mũ, logarit. 15.4 Câu hỏi tổng hợp liên quan hàm số lũy thừa, mũ, logarit. 15.5 Bài toán lãi suất. 15.6 Bài toán tăng trưởng. 15.6 Hàm số mũ,logarit chứa tham số. 15.6 GTLN – GTNN liên quan hàm mũ, hàm logarit(nhiều biến). 16. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MŨ. 16.1 PT – BPT mũ cơ bản, gần cơ bản (không tham số). 16.2 Phương pháp đưa về cùng cơ số (không tham số). 16.3 Phương pháp hàm số, đánh giá (không tham số). 17. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH LOGARIT. 17.1 Câu hỏi lý thuyết. 17.2 PT – BPT logarit cơ bản, gần cơ bản (không tham số). 17.3 Phương pháp đưa về cùng cơ số (không tham số). 17.4 Phương pháp phân tích thành nhân tử (không tham số). 17.5 Phương pháp hàm số, đánh giá (không tham số). 17.6 Phương trình logarit có chứa tham số. 17.7 Phương trình, bất phương trình tổ hợp cả mũ và logarit có tham số. 18. NGUYÊN HÀM. 18.1 Định nghĩa, tính chất của nguyên hàm. 18.2 Nguyên hàm của hàm số cơ bản, gần cơ bản. 18.3 Nguyên hàm phân thức. 18.4 Phương trình nguyên hàm từng phần. 18.5 Nguyên hàm kết hợp đổi biến và từng phần hàm xác định. 18.6 Nguyên hàm liên quan đến hàm ẩn. 19. TÍCH PHÂN. 19.1 Kiểm tra định nghĩa, tính chất của tích phân. 19.2 Tích phân cơ bản, kết hợp tính chất. 19.3 Phương pháp tích phân từng phần hàm xác định. 19.4 Kết hợp đổi biến và từng phần tính tích phân hàm xác định. 19.5 Tích phân liên quan đến phương trình hàm ẩn. 20. ỨNG DỤNG TÍCH PHÂN. 20.1 Xác định công thức tính diện tích, thể tích dựa vào đồ thị. 20.2 Diện tích hình phẳng được giới hạn bởi các đồ thị hàm xác định. 20.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) hàm xác định. 21. KHÁI NIỆM SỐ PHỨC. 21.1 Các yếu tố và thuộc tính cơ bản của số phức. 22. CÁC PHÉP TOÁN SỐ PHỨC. 22.1 Thực hiện các phép toán cơ bản về số phức. 22.2 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán. 22.3 Giải phương trình bậc nhất theo z (và z liên hợp). 23. BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỨC. 23.1 Câu hỏi lý thuyết, biểu diễn hình học của số phức. 23.2 Tập hợp điểm biểu diễn là đường tròn, hình tròn. 24. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. 24.1 Tính toán biểu thức nghiệm. 24.1 Các bài toán biểu diễn hình học nghiệm của phương trình. 24.1 Các bài toán khác về phương trình. 25. THỂ TÍCH KHỐI CHÓP. 25.1 Câu hỏi dạng lý thuyết (công thức V, h, B). 25.2 Thể tích khối chóp đều. 25.3 Thể tích khối chóp khác. 25.4 Tỉ số thể tích trong khối chóp. 26. THỂ TÍCH KHỐI LĂNG TRỤ – ĐA DIỆN KHÁC. 26.1 Câu hỏi dạng lý thuyết(Công thức V, h, B). 26.2 Thể tích khối lập phương, khối hộp chữ nhật. 26.3 Thể tích khối lăng trụ đều. 26.4 Thể tích khối đa diện phức tạp. 27. KHỐI NÓN. 27.1 Câu hỏi lý thuyết về khối nón. 27.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối nón khi biết các dữ kiện cơ bản. 28. KHỐI TRỤ. 28.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối trụ khi biết các dữ kiện cơ bản. 28.2 Bài toán thực tế về khối trụ. 29. KHỐI CẦU. 29.1 Câu hỏi chỉ liên quan đến biến đổi V, S, R. 29.2 Khối cầu nội – ngoại tiếp, liên kết khối đa diện. 29.3 Bài toán tổng hợp về khối nón, khối trụ, khối cầu. 30. TỌA ĐỘ ĐIỂM – VECTƠ. 30.1 Hình chiếu của điểm lên các trục tọa độ, lên các mặt phẳng tọa độ và điểm đối xứng của nó. 31. PHƯƠNG TRÌNH MẶT CẦU. 31.1 Tìm tâm và bán kính, điều kiện xác định mặt cầu. 32.1 Điểm thuộc mặt cầu thoả điều kiện. 32. PHƯƠNG TRÌNH MẶT PHẲNG. 32.1 Tìm VTPT, các vấn đề về lý thuyết. 32.2 Phương trình mặt phẳng trung trực của đoạn thẳng. 32.3 Phương trình mặt phẳng qua một điểm, dễ tìm VTPT (không dùng tích có hướng). 33.4 Phương trình mặt phẳng qua một điểm, song song với một mặt phẳng. 33.5 Phương trình mặt phẳng theo đoạn chắn. 33.6 Phương trình mặt phẳng qua một điểm, vuông góc với đường thẳng. 33. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. 33.1 Các câu hỏi chưa phân dạng. 33.2 Tìm VTCP, các vấn đề về lý thuyết. 33.3 Phương trình đường thẳng qua một điểm, dễ tìm VTCP (không dùng tích có hướng). 33.4 Phương trình đường thẳng qua một điểm, thoả điều kiện khác. 33.5 Toán GTLN – GTNN liên quan đến đường thẳng.

Nguồn: toanmath.com

Đọc Sách

50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1
Nội dung 50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1 Bản PDF - Nội dung bài viết Sản Phẩm 50 Dạng Toán Phát Triển Đề Minh Họa THPT QG 2020 Sản Phẩm 50 Dạng Toán Phát Triển Đề Minh Họa THPT QG 2020 Tài liệu gồm 778 trang, được biên soạn bởi tập thể quý thầy, cô giáo nhóm GeoGebra Pro, tuyển tập 50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1 là tài liệu ôn tập hữu ích giúp học sinh chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Đây là một tuyển tập đa dạng các dạng toán từ lớp 1 đến lớp 50, bao gồm các chủ đề quan trọng dành cho học sinh THPT. Từ phép đếm đơn giản, cấp số cộng, đến các dạng toán phức tạp như phương trình, hàm số, logarit và số phức, tất cả đều có mặt trong tài liệu này. Mỗi dạng toán được trình bày theo ba phần: kiến thức cần nhớ, bài tập mẫu và bài tập tương tự và phát triển. Bên cạnh đó, có đáp án và lời giải chi tiết giúp học sinh hiểu rõ từng bước giải. Với sự chuẩn bị kỹ lưỡng từ nhóm tác giả là những thầy cô giáo có kinh nghiệm, tài liệu 50 dạng toán này không chỉ là công cụ học tập hữu ích mà còn là nguồn động viên và tự tin cho các học sinh trong quá trình ôn tập và thi cử. Đồng thời, nó cũng giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic.
Bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán
Nội dung Bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán Bản PDF - Nội dung bài viết Bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán Bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán Bộ tài liệu này là sự tổng hợp và biên soạn của thầy giáo Nguyễn Hoàng Việt, gồm 144 trang tập hợp câu hỏi và bài tập trắc nghiệm tương tự với đề minh họa tốt nghiệp THPT năm 2020 môn Toán của Bộ Giáo dục và Đào tạo. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh khối 12 ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT năm học 2019 – 2020. Trích dẫn từ tài liệu bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán: Định hướng xây dựng bài toán: Tương tự như câu 43 giữ nguyên dạng phương trình và cách đặt vấn đề cũng như yêu cầu của bài toán. Ý tưởng: Sử dụng công thức cho hình nón để giải quyết bài toán đưa ra. Sử dụng kiến thức về góc và khối lượng để tìm giải pháp cho câu hỏi. Nhận xét: Dạng toán ở mức độ thông hiểu, cần kĩ năng quan sát và đọc bảng biến thiên để giải quyết bài toán. Yêu cầu học sinh có hiểu biết sâu và biện luận logic để đạt được kết quả mong muốn. Bộ tài liệu này sẽ giúp học sinh ôn tập môn Toán một cách hiệu quả, chuẩn bị tốt cho kỳ thi tốt nghiệp THPT. Các bài tập và câu hỏi được chọn lọc kỹ càng và đa dạng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải quyết vấn đề.
Phát triển bài toán vận dụng cao đề minh họa THPT 2020 môn Toán lần 2
Nội dung Phát triển bài toán vận dụng cao đề minh họa THPT 2020 môn Toán lần 2 Bản PDF - Nội dung bài viết Phát triển bài toán vận dụng cao THPT 2020 môn Toán lần 2 Phát triển bài toán vận dụng cao THPT 2020 môn Toán lần 2 Để giúp học sinh chuẩn bị cho kỳ thi tốt nghiệp THPT năm 2020 môn Toán, thầy giáo Lê Văn Đoàn đã biên soạn một tài liệu hướng dẫn giải và phát triển các bài toán vận dụng cao (VDC) trong đề minh họa. Tài liệu này bao gồm 51 trang, tập trung vào việc giải và phát triển các bài toán từ câu 46 đến câu 50. Cụ thể, tài liệu bao gồm các dạng toán như: Câu 46: Tìm số nghiệm của phương trình liên quan đến sinx khi có bảng biến thiên Biện luận nghiệm dựa vào bảng biến thiên hoặc đồ thị hàm f(x) Bài toán kết hợp giữa hàm số và tích phân Bài toán chứa tham số m trong bài toán chứa hàm cụ thể Câu 47: Tìm GTLN – GTNN của biểu thức hai ẩn phụ thuộc vào mũ – logarit Bài toán dồn biến, rồi sử dụng bất đẳng thức Cauchy hoặc khảo sát hàm một biến Sử dụng f(u) = f(v) hoặc f(u) > f(v) hoặc f(u) < f(v) khi hai gặp hai hàm khác loại Câu 48: Tìm GTLN – GTNN của hàm phụ thuộc tham số trên đoạn Bài toán chứa tham số trong hàm cụ thể Bài toán max – min khi đề cho đồ thị hoặc bảng biến thiên Giá trị lớn nhất và nhỏ nhất của hàm trị tuyệt đối Câu 49: Thể tích khối đa diện cắt ra từ một khối khác Câu 50: Tìm số ẩn hoặc mối liên hệ giữa các ẩn trong phương trình logarit chứa hai ẩn Đây là những dạng toán phức tạp và đòi hỏi một sự am hiểu sâu sắc về lý thuyết và kỹ năng giải toán của học sinh. Hy vọng tài liệu này sẽ giúp các em tự tin và chuẩn bị tốt cho kỳ thi sắp tới.
Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2
Nội dung Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 Bản PDF - Nội dung bài viết Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 Tài liệu Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 được biên soạn bởi thầy giáo Ths. Nguyễn Chín Em và bao gồm 213 trang. Đây là tài liệu được sưu tầm kỹ lưỡng với mục đích hỗ trợ học sinh ôn tập và tự kiểm tra kiến thức trước kỳ thi quan trọng. Tài liệu này cung cấp 50 dạng toán khác nhau, từ những dạng toán cơ bản đến phức tạp, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán một cách linh hoạt. Mỗi câu hỏi và bài toán trong đề thi đều được kèm theo nhiều câu hỏi và bài toán tương tự, đồng thời có đáp án và lời giải chi tiết giúp học sinh tự kiểm tra và tự mình sửa sai. Các dạng toán trong tài liệu được chia thành nhiều cấp độ, từ lớp 1 đến lớp 50, bao gồm cả các dạng toán về hoán vị, chỉnh hợp, tổ hợp, phương trình mũ, logarit, hàm số mũ, nguyên hàm, tích phân, thể tích khối đa diện, số phức, hệ Oxyz, hàm số, và nhiều dạng toán khác. Điều này giúp học sinh tiếp cận một cách toàn diện các kiến thức cần thiết cho kỳ thi tốt nghiệp THPT. Qua tài liệu này, học sinh không chỉ được cung cấp nguồn tư liệu ôn tập mà còn được rèn luyện kỹ năng giải toán, tư duy logic và khả năng tự giác trong việc học tập. Đồng thời, tài liệu cũng giúp học sinh nâng cao kiến thức và tự tin hơn khi bước vào kỳ thi quan trọng của mình.