Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GDĐT

Tài liệu gồm 198 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Toán, phân loại và hướng dẫn giải các câu hỏi và bài toán trong đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo. Mục lục tài liệu toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GD&ĐT: 1. PHÉP ĐẾM (QUY TẮC CỘNG – QUY TẮC NHÂN). 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. 2.1 Đếm số (chỉ dùng một loại P hoặc A hoặc C). 2.2 Chọn người, vật. 3. XÁC SUẤT. 4. CẤP SỐ CỘNG. 5. CẤP SỐ NHÂN. 6. ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG. 6.1 Góc giữa đường thẳng và mặt phẳng. 6.2 Góc giữa đường thẳng và mặt phẳng. 7. KHOẢNG CÁCH. 7.1 Từ chân H của đường cao đến mặt phẳng cắt đường cao. 7.2 Từ điểm M (khác H) đến mặt phẳng cắt đường cao. 7.3 Hai đường chéo nhau (vẽ đoạn vuông góc chung). 7.4 Hai đường chéo nhau (mượn mặt phẳng). 8. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ. 8.1 Xét tính đơn điệu của hàm số (biết đồ thị, bảng biến thiên của y). 8.2 Điều kiện để hàm số bậc ba đơn điệu trên khoảng K. 8.3 Điều kiện để hàm số nhất biến đơn điệu trên khoảng K. 8.4 Đơn điệu liên quan hàm hợp, hàm ẩn. 8.5 Ứng dụng tính đơn điệu vào PT – BPT – HPT – BĐT. 9. CỰC TRỊ CỦA HÀM SỐ. 9.1 Tìm cực trị của hàm số cho bởi công thức của y, y’. 9.2 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng biến thiên của y). 9.3 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng xét dấu của y’). 9.4 Cực trị liên quan hàm hợp, hàm ẩn. 9.5 Cực trị liên quan hàm chứa dấu giá trị tuyệt đối. 10. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ. 10.1 GTLN – GTNN của f(x) trên đoạn [a;b] biết biểu thức f(x). 10.2 Tìm m để hàm số f(x) có GTLN – GTNN thỏa mãn điều kiện cho trước. 10.3 GTLN – GTNN hàm nhiều biến dạng khác. 11. TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ. 11.1 Tiệm cận đồ thị hàm số phân thức hữu tỷ, không chứa tham số. 11.2 Tiệm cận đồ thị hàm số f(x) dựa vào bảng biến thiên không tham số. 12. ĐỌC ĐỒ THỊ – BIẾN ĐỔI ĐỒ THỊ. 12.1 Nhận dạng các hàm số thường gặp (biết đồ thị, bảng biến thiên). 12.2 Xét dấu hệ số của biểu thức (biết đồ thị, bảng biến thiên). 12.3 Đọc đồ thị của đạo hàm (các cấp. 12. TƯƠNG GIAO CỦA HAI ĐỒ THỊ. 12.1 Tìm toạ độ (đếm) giao điểm. 12.2 Đếm số nghiệm phương trình cụ thể (cho đồ thị, bảng biến thiên). 12.3 Tương giao liên quan hàm hợp, hàm ẩn. 12.4 Điều kiện để f(x) = g(m) có n nghiệm (chứa GTTĐ). 12.5 Điều kiện để f(x) = g(m) có n nghiệm thuộc K (không GTTĐ). 13. MŨ – LŨY THỪA. 13.1 Kiểm tra quy tắc biến đổi lũy thừa, tính chất. 13.2 Tính toán, rút gọn các biểu thức có chứa biến(a, b, c, x, y, . . .). 14. LOGARIT. 14.1 Câu hỏi lý thuyết và tính chất. 14.2 Biến đổi các biểu thức logarit liên quan a, b, x, y. 14.3 Tính giá trị các biểu thức logarit không dùng BĐT. 14.4 Dạng toán khác về logarit. 15. HÀM SỐ MŨ – LOGARIT. 15.1 Tập xác định liên quan hàm số mũ, hàm số logarit. 15.2 Đạo hàm liên quan hàm số mũ, hàm số logarit. 15.3 Đồ thị liên quan hàm số mũ, logarit. 15.4 Câu hỏi tổng hợp liên quan hàm số lũy thừa, mũ, logarit. 15.5 Bài toán lãi suất. 15.6 Bài toán tăng trưởng. 15.6 Hàm số mũ,logarit chứa tham số. 15.6 GTLN – GTNN liên quan hàm mũ, hàm logarit(nhiều biến). 16. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MŨ. 16.1 PT – BPT mũ cơ bản, gần cơ bản (không tham số). 16.2 Phương pháp đưa về cùng cơ số (không tham số). 16.3 Phương pháp hàm số, đánh giá (không tham số). 17. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH LOGARIT. 17.1 Câu hỏi lý thuyết. 17.2 PT – BPT logarit cơ bản, gần cơ bản (không tham số). 17.3 Phương pháp đưa về cùng cơ số (không tham số). 17.4 Phương pháp phân tích thành nhân tử (không tham số). 17.5 Phương pháp hàm số, đánh giá (không tham số). 17.6 Phương trình logarit có chứa tham số. 17.7 Phương trình, bất phương trình tổ hợp cả mũ và logarit có tham số. 18. NGUYÊN HÀM. 18.1 Định nghĩa, tính chất của nguyên hàm. 18.2 Nguyên hàm của hàm số cơ bản, gần cơ bản. 18.3 Nguyên hàm phân thức. 18.4 Phương trình nguyên hàm từng phần. 18.5 Nguyên hàm kết hợp đổi biến và từng phần hàm xác định. 18.6 Nguyên hàm liên quan đến hàm ẩn. 19. TÍCH PHÂN. 19.1 Kiểm tra định nghĩa, tính chất của tích phân. 19.2 Tích phân cơ bản, kết hợp tính chất. 19.3 Phương pháp tích phân từng phần hàm xác định. 19.4 Kết hợp đổi biến và từng phần tính tích phân hàm xác định. 19.5 Tích phân liên quan đến phương trình hàm ẩn. 20. ỨNG DỤNG TÍCH PHÂN. 20.1 Xác định công thức tính diện tích, thể tích dựa vào đồ thị. 20.2 Diện tích hình phẳng được giới hạn bởi các đồ thị hàm xác định. 20.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) hàm xác định. 21. KHÁI NIỆM SỐ PHỨC. 21.1 Các yếu tố và thuộc tính cơ bản của số phức. 22. CÁC PHÉP TOÁN SỐ PHỨC. 22.1 Thực hiện các phép toán cơ bản về số phức. 22.2 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán. 22.3 Giải phương trình bậc nhất theo z (và z liên hợp). 23. BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỨC. 23.1 Câu hỏi lý thuyết, biểu diễn hình học của số phức. 23.2 Tập hợp điểm biểu diễn là đường tròn, hình tròn. 24. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. 24.1 Tính toán biểu thức nghiệm. 24.1 Các bài toán biểu diễn hình học nghiệm của phương trình. 24.1 Các bài toán khác về phương trình. 25. THỂ TÍCH KHỐI CHÓP. 25.1 Câu hỏi dạng lý thuyết (công thức V, h, B). 25.2 Thể tích khối chóp đều. 25.3 Thể tích khối chóp khác. 25.4 Tỉ số thể tích trong khối chóp. 26. THỂ TÍCH KHỐI LĂNG TRỤ – ĐA DIỆN KHÁC. 26.1 Câu hỏi dạng lý thuyết(Công thức V, h, B). 26.2 Thể tích khối lập phương, khối hộp chữ nhật. 26.3 Thể tích khối lăng trụ đều. 26.4 Thể tích khối đa diện phức tạp. 27. KHỐI NÓN. 27.1 Câu hỏi lý thuyết về khối nón. 27.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối nón khi biết các dữ kiện cơ bản. 28. KHỐI TRỤ. 28.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối trụ khi biết các dữ kiện cơ bản. 28.2 Bài toán thực tế về khối trụ. 29. KHỐI CẦU. 29.1 Câu hỏi chỉ liên quan đến biến đổi V, S, R. 29.2 Khối cầu nội – ngoại tiếp, liên kết khối đa diện. 29.3 Bài toán tổng hợp về khối nón, khối trụ, khối cầu. 30. TỌA ĐỘ ĐIỂM – VECTƠ. 30.1 Hình chiếu của điểm lên các trục tọa độ, lên các mặt phẳng tọa độ và điểm đối xứng của nó. 31. PHƯƠNG TRÌNH MẶT CẦU. 31.1 Tìm tâm và bán kính, điều kiện xác định mặt cầu. 32.1 Điểm thuộc mặt cầu thoả điều kiện. 32. PHƯƠNG TRÌNH MẶT PHẲNG. 32.1 Tìm VTPT, các vấn đề về lý thuyết. 32.2 Phương trình mặt phẳng trung trực của đoạn thẳng. 32.3 Phương trình mặt phẳng qua một điểm, dễ tìm VTPT (không dùng tích có hướng). 33.4 Phương trình mặt phẳng qua một điểm, song song với một mặt phẳng. 33.5 Phương trình mặt phẳng theo đoạn chắn. 33.6 Phương trình mặt phẳng qua một điểm, vuông góc với đường thẳng. 33. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. 33.1 Các câu hỏi chưa phân dạng. 33.2 Tìm VTCP, các vấn đề về lý thuyết. 33.3 Phương trình đường thẳng qua một điểm, dễ tìm VTCP (không dùng tích có hướng). 33.4 Phương trình đường thẳng qua một điểm, thoả điều kiện khác. 33.5 Toán GTLN – GTNN liên quan đến đường thẳng.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn thi THPT môn Toán giai đoạn 1 Lê Văn Đoàn
Nội dung Tài liệu ôn thi THPT môn Toán giai đoạn 1 Lê Văn Đoàn Bản PDF - Nội dung bài viết Tài liệu ôn thi THPT môn Toán giai đoạn 1 Lê Văn Đoàn Tài liệu ôn thi THPT môn Toán giai đoạn 1 Lê Văn Đoàn Tài liệu ôn thi THPT môn Toán giai đoạn 1 của thầy Lê Văn Đoàn bao gồm 83 trang được biên soạn bởi nhóm Toán gồm các thầy: Ths. Lê Văn Đoàn, Ths. Trương Huy Hoàng, Ths. Nguyễn Tiến Hà, Bùi Sỹ Khanh, Nguyễn Đức Nam, và Đỗ Minh Tiến. Tài liệu này tập trung vào các chuyên đề quan trọng như hàm số và các vấn đề liên quan, thể tích khối đa diện, giúp học sinh khối 12 ôn thi THPT môn Toán giai đoạn giữa học kỳ 1. Tài liệu bao gồm 481 bài tập trắc nghiệm (có đáp án) từ các chuyên đề như sau: Chuyên đề 1. HÀM SỐ VÀ CÁC VẤN ĐỀ LIÊN QUAN Bài toán lớp 1: Đơn điệu, cực trị, giá trị lớn nhất – giá trị nhỏ nhất, tiệm cận và tương giao khi đề bài cho bảng biến thiên hoặc đồ thị f(x) hoặc f'(x). Bài toán lớp 2: Đơn điệu, cực trị, giá trị lớn nhất – giá trị nhỏ nhất, tiệm cận và tương giao khi đề bài cho hàm số f(x) hoặc f'(x) cụ thể. Bài toán lớp 3: Bài toán chứa tham số. ... Chuyên đề 2. THỂ TÍCH KHỐI ĐA DIỆN Bài toán lớp 1: Thể tích khối chóp, khối lập phương, khối hộp chữ nhật, khối lăng trụ. Bài toán lớp 2: Bài toán cực trị thể tích. Bài toán lớp 3: Tỉ số thể tích. ... Tài liệu này cung cấp những bài tập đa dạng và phong phú, giúp học sinh hiểu rõ hơn về các chuyên đề Toán quan trọng và chuẩn bị tốt cho kỳ thi THPT sắp tới.
Các chuyên đề Giải tích ôn thi tốt nghiệp THPT Lư Sĩ Pháp
Nội dung Các chuyên đề Giải tích ôn thi tốt nghiệp THPT Lư Sĩ Pháp Bản PDF - Nội dung bài viết Các chuyên đề Giải tích ôn thi tốt nghiệp THPT Lư Sĩ Pháp Các chuyên đề Giải tích ôn thi tốt nghiệp THPT Lư Sĩ Pháp Tài liệu này bao gồm 118 trang và đã được biên soạn bởi thầy Lư Sĩ Pháp. Đây là tập 1 trong bộ sách "Toán ôn thi tốt nghiệp", tập trung vào các chuyên đề về Giải tích. Nội dung của tài liệu được thiết kế để bám sát chương trình của Bộ Giáo dục và Đào tạo, mang lại cho học sinh sự chuẩn bị tốt nhất cho kỳ thi tốt nghiệp THPT. Trên các trang của tài liệu, bạn sẽ tìm thấy hệ thống bài tập trắc nghiệm Giải tích có đáp án, giúp bạn kiểm tra và củng cố kiến thức một cách hiệu quả. Các chuyên đề trong tài liệu bao gồm: 1. Khảo sát hàm số (trang 01 – trang 36) 2. Lũy thừa – mũ – lôgarit (trang 37 – trang 59) 3. Nguyên hàm – tích phân (trang 60 – trang 83) 4. Số phức (trang 84 – trang 99) 5. Cấp số cộng – cấp số nhân (trang 100 – trang 104) 6. Tổ hợp – xác suất (trang 105 – trang 114) Với cấu trúc rõ ràng và dễ hiểu, tài liệu này sẽ giúp bạn nắm vững kiến thức cơ bản và nâng cao về Giải tích để tự tin đối mặt với bài thi tốt nghiệp THPT. Hãy cùng thầy Lư Sĩ Pháp trải nghiệm bộ sách hữu ích này và đạt thành tích tốt nhất trong kỳ thi sắp tới!
Tài liệu ôn thi THPT Quốc gia môn Toán Hồ Xuân Trọng
Nội dung Tài liệu ôn thi THPT Quốc gia môn Toán Hồ Xuân Trọng Bản PDF - Nội dung bài viết Tài liệu ôn thi THPT Quốc gia môn Toán Hồ Xuân TrọngPHẦN I: GIẢI TÍCHPHẦN II: HÌNH HỌCPHẦN III: ĐẠI SỐ & GIẢI TÍCHPHẦN IV: HÌNH HỌC Tài liệu ôn thi THPT Quốc gia môn Toán Hồ Xuân Trọng Tài liệu ôn thi THPT Quốc gia môn Toán do thầy giáo Hồ Xuân Trọng biên soạn gồm tổng cộng 335 trang. Được tuyển chọn kỹ lưỡng từ các câu hỏi và bài tập trắc nghiệm các chủ đề quan trọng trong chương trình ôn thi THPT Quốc gia môn Toán. Tài liệu được chia thành các phần sau: PHẦN I: GIẢI TÍCH CHƯƠNG 1: Khảo sát hàm số và ứng dụng - Sự đồng biến, nghịch biến của hàm số - Tìm điều kiện để hàm số đơn điệu trên một khoảng cho trước - Tính đơn điệu của hàm hợp - Cực trị của hàm số - Tìm cực trị của hàm số hợp - Giá trị lớn nhất và nhỏ nhất của hàm số - Tiệm cận của đồ thị hàm số - Nhận dạng hàm số từ đồ thị, bảng biến thiên - Phát hiện tính chất của hàm số dựa và đồ thị của hàm số CHƯƠNG 2: Hàm số lũy thừa, mũ, và logarit - Lôgarit - Phương trình và bất phương trình logarit, mũ - Ứng dụng phương pháp hàm số giải phương trình mũ và logarit CHƯƠNG 3: Nguyên hàm, tích phân và ứng dụng - Nguyên hàm cơ bản - Tính chất của tích phân - Ứng dụng của tích phân CHƯƠNG 4: Số phức - Khái niệm số phức và các phép toán - Biểu diễn hình học của số phức PHẦN II: HÌNH HỌC CHƯƠNG 5: Thể tích khối đa diện - Tính thể tích khối chóp và lăng trụ CHƯƠNG 6: Mặt nón - Mặt trụ - Mặt cầu - Hình nón, khối nón - Khối trụ CHƯƠNG 7: Phương pháp tọa độ trong không gian - Tọa độ của điểm, véc-tơ - Phương trình mặt phẳng và đường thẳng - Phương trình mặt cầu PHẦN III: ĐẠI SỐ & GIẢI TÍCH CHƯƠNG 8: Tổ hợp - Xác suất - Công thức khai triển nhị thức Newton - Các quy tắc đếm - Xác suất CHƯƠNG 9: Dãy số - Cấp số cộng và cấp số nhân - Cấp số cộng, cấp số nhân PHẦN IV: HÌNH HỌC CHƯƠNG 10 - Góc, khoảng cách Đây là tài liệu hữu ích giúp học sinh ôn thi THPT Quốc gia môn Toán một cách hiệu quả và nâng cao kiến thức của mình. Mong rằng tài liệu sẽ giúp đỡ các bạn trong quá trình ôn tập và đạt kết quả cao trong kỳ thi sắp tới.
Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm Trần Tuấn Anh
Nội dung Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm Trần Tuấn Anh Bản PDF - Nội dung bài viết Sử dụng suy luận trong giải toán trắc nghiệm Sử dụng suy luận trong giải toán trắc nghiệm Tài liệu "Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm" được biên soạn bởi thầy Trần Tuấn Anh, là nguồn hướng dẫn quan trọng giúp học sinh ôn thi tốt nghiệp Trung học Phổ thông Quốc gia môn Toán. Tài liệu này không chỉ giúp học sinh ôn tập mà còn hướng dẫn cách sử dụng suy luận để giải các bài toán trắc nghiệm một cách logic và nhanh chóng. Các bài toán đặc biệt có thể được giải nhanh chóng nhờ những suy luận toán học, giúp tiết kiệm thời gian trong quá trình giải quyết. Việc đọc tài liệu này cũng giúp học sinh hiểu rõ về việc kết hợp các phương pháp giải toán. Đôi khi, một bài toán cần sự linh hoạt và kết hợp nhiều phương pháp để chọn được đáp án đúng. Việc vận dụng các phương pháp một cách linh hoạt và tổng lực là điều cần thiết khi giải toán trắc nghiệm. Tài liệu này không chỉ là một nguồn hướng dẫn, mà còn giúp học sinh phát triển khả năng tư duy logic, sáng tạo và linh hoạt trong giải quyết bài toán. Hãy tận dụng mỗi phương pháp một cách hữu ích và áp dụng chúng vào từng dạng bài toán khác nhau để có kết quả tốt nhất.