Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GDĐT

Tài liệu gồm 198 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Toán, phân loại và hướng dẫn giải các câu hỏi và bài toán trong đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo. Mục lục tài liệu toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GD&ĐT: 1. PHÉP ĐẾM (QUY TẮC CỘNG – QUY TẮC NHÂN). 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. 2.1 Đếm số (chỉ dùng một loại P hoặc A hoặc C). 2.2 Chọn người, vật. 3. XÁC SUẤT. 4. CẤP SỐ CỘNG. 5. CẤP SỐ NHÂN. 6. ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG. 6.1 Góc giữa đường thẳng và mặt phẳng. 6.2 Góc giữa đường thẳng và mặt phẳng. 7. KHOẢNG CÁCH. 7.1 Từ chân H của đường cao đến mặt phẳng cắt đường cao. 7.2 Từ điểm M (khác H) đến mặt phẳng cắt đường cao. 7.3 Hai đường chéo nhau (vẽ đoạn vuông góc chung). 7.4 Hai đường chéo nhau (mượn mặt phẳng). 8. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ. 8.1 Xét tính đơn điệu của hàm số (biết đồ thị, bảng biến thiên của y). 8.2 Điều kiện để hàm số bậc ba đơn điệu trên khoảng K. 8.3 Điều kiện để hàm số nhất biến đơn điệu trên khoảng K. 8.4 Đơn điệu liên quan hàm hợp, hàm ẩn. 8.5 Ứng dụng tính đơn điệu vào PT – BPT – HPT – BĐT. 9. CỰC TRỊ CỦA HÀM SỐ. 9.1 Tìm cực trị của hàm số cho bởi công thức của y, y’. 9.2 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng biến thiên của y). 9.3 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng xét dấu của y’). 9.4 Cực trị liên quan hàm hợp, hàm ẩn. 9.5 Cực trị liên quan hàm chứa dấu giá trị tuyệt đối. 10. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ. 10.1 GTLN – GTNN của f(x) trên đoạn [a;b] biết biểu thức f(x). 10.2 Tìm m để hàm số f(x) có GTLN – GTNN thỏa mãn điều kiện cho trước. 10.3 GTLN – GTNN hàm nhiều biến dạng khác. 11. TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ. 11.1 Tiệm cận đồ thị hàm số phân thức hữu tỷ, không chứa tham số. 11.2 Tiệm cận đồ thị hàm số f(x) dựa vào bảng biến thiên không tham số. 12. ĐỌC ĐỒ THỊ – BIẾN ĐỔI ĐỒ THỊ. 12.1 Nhận dạng các hàm số thường gặp (biết đồ thị, bảng biến thiên). 12.2 Xét dấu hệ số của biểu thức (biết đồ thị, bảng biến thiên). 12.3 Đọc đồ thị của đạo hàm (các cấp. 12. TƯƠNG GIAO CỦA HAI ĐỒ THỊ. 12.1 Tìm toạ độ (đếm) giao điểm. 12.2 Đếm số nghiệm phương trình cụ thể (cho đồ thị, bảng biến thiên). 12.3 Tương giao liên quan hàm hợp, hàm ẩn. 12.4 Điều kiện để f(x) = g(m) có n nghiệm (chứa GTTĐ). 12.5 Điều kiện để f(x) = g(m) có n nghiệm thuộc K (không GTTĐ). 13. MŨ – LŨY THỪA. 13.1 Kiểm tra quy tắc biến đổi lũy thừa, tính chất. 13.2 Tính toán, rút gọn các biểu thức có chứa biến(a, b, c, x, y, . . .). 14. LOGARIT. 14.1 Câu hỏi lý thuyết và tính chất. 14.2 Biến đổi các biểu thức logarit liên quan a, b, x, y. 14.3 Tính giá trị các biểu thức logarit không dùng BĐT. 14.4 Dạng toán khác về logarit. 15. HÀM SỐ MŨ – LOGARIT. 15.1 Tập xác định liên quan hàm số mũ, hàm số logarit. 15.2 Đạo hàm liên quan hàm số mũ, hàm số logarit. 15.3 Đồ thị liên quan hàm số mũ, logarit. 15.4 Câu hỏi tổng hợp liên quan hàm số lũy thừa, mũ, logarit. 15.5 Bài toán lãi suất. 15.6 Bài toán tăng trưởng. 15.6 Hàm số mũ,logarit chứa tham số. 15.6 GTLN – GTNN liên quan hàm mũ, hàm logarit(nhiều biến). 16. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MŨ. 16.1 PT – BPT mũ cơ bản, gần cơ bản (không tham số). 16.2 Phương pháp đưa về cùng cơ số (không tham số). 16.3 Phương pháp hàm số, đánh giá (không tham số). 17. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH LOGARIT. 17.1 Câu hỏi lý thuyết. 17.2 PT – BPT logarit cơ bản, gần cơ bản (không tham số). 17.3 Phương pháp đưa về cùng cơ số (không tham số). 17.4 Phương pháp phân tích thành nhân tử (không tham số). 17.5 Phương pháp hàm số, đánh giá (không tham số). 17.6 Phương trình logarit có chứa tham số. 17.7 Phương trình, bất phương trình tổ hợp cả mũ và logarit có tham số. 18. NGUYÊN HÀM. 18.1 Định nghĩa, tính chất của nguyên hàm. 18.2 Nguyên hàm của hàm số cơ bản, gần cơ bản. 18.3 Nguyên hàm phân thức. 18.4 Phương trình nguyên hàm từng phần. 18.5 Nguyên hàm kết hợp đổi biến và từng phần hàm xác định. 18.6 Nguyên hàm liên quan đến hàm ẩn. 19. TÍCH PHÂN. 19.1 Kiểm tra định nghĩa, tính chất của tích phân. 19.2 Tích phân cơ bản, kết hợp tính chất. 19.3 Phương pháp tích phân từng phần hàm xác định. 19.4 Kết hợp đổi biến và từng phần tính tích phân hàm xác định. 19.5 Tích phân liên quan đến phương trình hàm ẩn. 20. ỨNG DỤNG TÍCH PHÂN. 20.1 Xác định công thức tính diện tích, thể tích dựa vào đồ thị. 20.2 Diện tích hình phẳng được giới hạn bởi các đồ thị hàm xác định. 20.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) hàm xác định. 21. KHÁI NIỆM SỐ PHỨC. 21.1 Các yếu tố và thuộc tính cơ bản của số phức. 22. CÁC PHÉP TOÁN SỐ PHỨC. 22.1 Thực hiện các phép toán cơ bản về số phức. 22.2 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán. 22.3 Giải phương trình bậc nhất theo z (và z liên hợp). 23. BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỨC. 23.1 Câu hỏi lý thuyết, biểu diễn hình học của số phức. 23.2 Tập hợp điểm biểu diễn là đường tròn, hình tròn. 24. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. 24.1 Tính toán biểu thức nghiệm. 24.1 Các bài toán biểu diễn hình học nghiệm của phương trình. 24.1 Các bài toán khác về phương trình. 25. THỂ TÍCH KHỐI CHÓP. 25.1 Câu hỏi dạng lý thuyết (công thức V, h, B). 25.2 Thể tích khối chóp đều. 25.3 Thể tích khối chóp khác. 25.4 Tỉ số thể tích trong khối chóp. 26. THỂ TÍCH KHỐI LĂNG TRỤ – ĐA DIỆN KHÁC. 26.1 Câu hỏi dạng lý thuyết(Công thức V, h, B). 26.2 Thể tích khối lập phương, khối hộp chữ nhật. 26.3 Thể tích khối lăng trụ đều. 26.4 Thể tích khối đa diện phức tạp. 27. KHỐI NÓN. 27.1 Câu hỏi lý thuyết về khối nón. 27.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối nón khi biết các dữ kiện cơ bản. 28. KHỐI TRỤ. 28.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối trụ khi biết các dữ kiện cơ bản. 28.2 Bài toán thực tế về khối trụ. 29. KHỐI CẦU. 29.1 Câu hỏi chỉ liên quan đến biến đổi V, S, R. 29.2 Khối cầu nội – ngoại tiếp, liên kết khối đa diện. 29.3 Bài toán tổng hợp về khối nón, khối trụ, khối cầu. 30. TỌA ĐỘ ĐIỂM – VECTƠ. 30.1 Hình chiếu của điểm lên các trục tọa độ, lên các mặt phẳng tọa độ và điểm đối xứng của nó. 31. PHƯƠNG TRÌNH MẶT CẦU. 31.1 Tìm tâm và bán kính, điều kiện xác định mặt cầu. 32.1 Điểm thuộc mặt cầu thoả điều kiện. 32. PHƯƠNG TRÌNH MẶT PHẲNG. 32.1 Tìm VTPT, các vấn đề về lý thuyết. 32.2 Phương trình mặt phẳng trung trực của đoạn thẳng. 32.3 Phương trình mặt phẳng qua một điểm, dễ tìm VTPT (không dùng tích có hướng). 33.4 Phương trình mặt phẳng qua một điểm, song song với một mặt phẳng. 33.5 Phương trình mặt phẳng theo đoạn chắn. 33.6 Phương trình mặt phẳng qua một điểm, vuông góc với đường thẳng. 33. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. 33.1 Các câu hỏi chưa phân dạng. 33.2 Tìm VTCP, các vấn đề về lý thuyết. 33.3 Phương trình đường thẳng qua một điểm, dễ tìm VTCP (không dùng tích có hướng). 33.4 Phương trình đường thẳng qua một điểm, thoả điều kiện khác. 33.5 Toán GTLN – GTNN liên quan đến đường thẳng.

Nguồn: toanmath.com

Đọc Sách

Đề cương ôn thi THPT QG 2022 môn Toán chuẩn cấu trúc đề minh họa
Tài liệu gồm 255 trang, được biên soạn bởi Ths Toán Giải Tích Nguyễn Hữu Chung Kiên, tuyển tập 28 chuyên đề phân loại theo 50 câu trắc nghiệm, 10 đề chuẩn cấu trúc theo đề minh họa môn Toán năm 2022 của Bộ Giáo dục và Đào tạo và 05 đề thi thử TN THPT môn Toán của các trường THPT / sở GD&ĐT có ảnh hưởng trên cả nước. MỤC LỤC : 1 Hoán vị, chỉnh hợp, tổ hợp 1. A Kiến thức cần nhớ 1. B Bài tập mẫu 2. C Bài tập tương tự và phát triển 2. D Bảng đáp án 3. 2 Cấp số cộng – Cấp số nhân 4. A Kiến thức cần nhớ 4. B Bài tập mẫu 4. C Bài tập tương tự và phát triển 5. D Bảng đáp án 6. 3 Xác suất của biến cố 7. A Kiến Thức Cần Nhớ 7. B Bài Tập Mẫu 8. C Bài Tập Tương Tự và Phát Triển 8. D Bảng đáp án 13. 4 Đọc bảng biến thiên, đồ thị 14. A Kiến thức cần nhớ 14. B Bài tập mẫu 14. C Bài tập tương tự và phát triển 16. D Bảng đáp án 28. 5 Tìm GTLN – GTNN của hàm số trên đoạn 29. A Kiến Thức Cần Nhớ 29. B Bài Tập Mẫu 29. C Bài Tập Tương Tự và Phát Triển 29. D Bảng đáp án 31. 6 Tiệm cận của đồ thị hàm số 32. A Kiến thức cần nhớ 32. B Bài tập mẫu 32. C Bài tập tương tự và phát triển 32. D Bảng đáp án 35. 7 Khảo sát, nhận dạng hàm số, đồ thị 36. A Kiến thức cần nhớ 36. B Bài tập mẫu 37. C Bài tập tương tự và phát triển 38. D Bảng đáp án 42. 8 Hàm số lũy thừa, mũ, logarit 43. A Kiến thức cần nhớ 43. B Bài tập mẫu 45. C Bài tập tương tự và phát triển 45. D Bảng đáp án 49. 9 Phương trình – bất phương trình mũ, logarit 50. A Kiến thức cần nhớ 50. B Bài tập mẫu 51. C Bài tập tương tự và phát triển 51. D Bảng đáp án 54. 10 Công thức tính nguyên hàm cơ bản 55. A Kiến thức cần nhớ 55. B Bài tập mẫu 55. C Bài tập tương tự và phát triển 56. D Bảng đáp án 60. 11 Sử dụng tích chất của tích phân 61. A Kiến thức cần nhớ 61. B Bài tập mẫu 61. C Bài tập tương tự và phát triển 62. D Bảng đáp án 64. 12 Số phức 65. A Kiến thức cần nhớ 65. B Bài tập mẫu 66. C Bài tập tương tự và phát triển 67. D Bảng đáp án 71. 13 Góc 72. A Kiến Thức Cần Nhớ 72. B Bài Tập Mẫu 73. C Bài Tập Tương Tự và Phát Triển 74. D Bảng đáp án 76. 14 Khoảng cách 77. A Kiến Thức Cần Nhớ 77. B Bài Tập Mẫu 78. C Bài Tập Tương Tự và Phát Triển 79. D Bảng đáp án 80. 15 Thể tích khối đa diện 81. A Kiến thức cần nhớ 81. B Bài tập mẫu 83. C Bài tập tương tự và phát triển 83. D Bảng đáp án 87. 16 Khối nón 88. A Kiến thức cần nhớ 88. B Bài tập mẫu 90. C Bài tập tương tự và phát triển 90. D Bảng đáp án 93. 17 Khối trụ 94. A Kiến thức cần nhớ 94. B Bài tập mẫu 94. C Bài tập tương tự và phát triển 94. D Bảng đáp án 97. 18 Khối cầu 98. A Kiến Thức Cần Nhớ 98. B Bài Tập Mẫu 98. C Bài Tập Tương Tự và Phát Triển 99. D Bảng đáp án 102. 19 Phương pháp tọa độ trong không gian 103. A Kiến Thức Cần Nhớ 103. B Bài Tập Mẫu 104. C Bài Tập Tương Tự và Phát Triển 104. D Bảng đáp án 105. 20 Phương trình mặt phẳng 106. A Kiến Thức Cần Nhớ 106. B Bài Tập Mẫu 106. C Bài Tập Tương Tự và Phát Triển 107. D Bảng đáp án 108. 21 Phương trình đường thẳng 109. A Kiến Thức Cần Nhớ 109. B Bài Tập Mẫu 109. C Bài Tập Tương Tự và Phát Triển 110. D Bảng đáp án 116. 22 Giá trị nguyên thỏa biểu thức mũ, logarit – Vận dụng 117. A Kiến Thức Cần Nhớ 117. B Bài Tập Mẫu 117. C Bài Tập Tương Tự và Phát Triển 117. D Bảng đáp án 124. 23 Phương trình hàm hợp – Vận dụng 125. A Kiến Thức Cần Nhớ 125. B Bài Tập Mẫu 125. C Bài Tập Tương Tự và Phát Triển 126. D Bảng đáp án 130. 24 Max – min số phức – Vận dụng 131. A Kiến Thức Cần Nhớ 131. B Bài Tập Mẫu 131. C Bài Tập Tương Tự và Phát Triển 131. D Bảng đáp án 133. 25 Diện tích hình phẳng – Vận dụng 134. A Kiến Thức Cần Nhớ 134. B Bài Tập Mẫu 134. C Bài Tập Tương Tự và Phát Triển 135. D Bảng đáp án 138. 26 Phương pháp tọa độ trong không gian – Vận dụng 139. A Kiến Thức Cần Nhớ 139. B Bài Tập Mẫu 139. C Bài Tập Tương Tự và Phát Triển 139. D Bảng đáp án 143. 27 Cực trị hàm ẩn – hàm hợp – Vận dụng 144. A Kiến Thức Cần Nhớ 144. B Bài Tập Mẫu 144. C Bài Tập Tương Tự và Phát Triển 145. D Bảng đáp án 151. 28 Hàm đặc trưng 152. A Bài tập trắc nghiệm 152. B Bảng đáp án 157. 29 ĐỀ THI THPT QUỐC GIA 2021 − LẦN 2 158. 30 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 1 163. 31 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 2 168. 32 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 3 174. 33 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 4 180. 34 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 5 186. 35 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 6 192. 36 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 7 198. 37 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 8 203. 38 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 9 208. 39 PHÁT TRIỂN ĐỀ MINH HỌA 2022 − ĐỀ 10 214. 40 ĐỀ THI THỬ SGD HƯNG YÊN 220. 41 ĐỀ THI THỬ SGD BÀ RỊA − VŨNG TÀU 226. 42 ĐỀ THI THỬ SGD VĨNH PHÚC 232. 43 ĐỀ THI THỬ SGD HẠ LONG 238. 44 ĐỀ THI THỬ CHUYÊN ĐHSP HÀ NỘI 244.
Phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán
Tài liệu gồm 87 trang, được biên soạn bởi tập thể quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: 1. Trần Ngọc Hùng; 2. Ngụy Như Thái; 3. Quảng Đại Hạn; 4. Quảng Đại Phước; 5. Đàng Xuân Phi; 6. Quảng Đại Mưa; 7. Nguyễn Văn Hồng … hướng dẫn phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán. PHẦN 1 : MA TRẬN ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. A Khung ma trận. B Bảng mô tả chi tiết nội dung câu hỏi. Câu 1 (2D4Y1-1). Xác định các yếu tố cơ bản của số phức. Câu 2 (2H3Y1-3). Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Câu 3 (2D1Y5-8). Câu hỏi lý thuyết. Câu 4 (2H2Y2-1). Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Câu 5 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 6 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 7 (2D2Y6-1). Bất phương trình cơ bản. Câu 8 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 9 (2D2Y2-1). Tập xác định của hàm số chứa hàm lũy thừa. Câu 10 (2D2Y5-1). Phương trình cơ bản. Câu 11 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 12 (2D4Y2-1). Thực hiện phép tính. Câu 13 (2H3Y2-2). Xác định VTPT. Câu 14 (2H3Y1-1). Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục. Câu 15 (2D4Y1-2). Biểu diễn hình học cơ bản của số phức. Câu 16 (2D1Y4-1). Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Câu 17 (2D2Y3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 18 (2D1Y5-1). Nhận dạng đồ thị, bảng biến thiên. Câu 19 (2H3Y3-3). Tìm tọa độ điểm liên quan đến đường thẳng. Câu 20 (1D2Y2-1). Bài toán chỉ sử dụng P hoặc C hoặc A. Câu 21 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 22 (2D2Y4-2). Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Câu 23 (2D1Y1-2). Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Câu 24 (2H2Y1-2). Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao,. Câu 25 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 26 (1D3Y3-3). Tìm hạng tử trong cấp số cộng. Câu 27 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 28 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 29 (2D1B3-1). GTLN, GTNN trên đoạn [a ;b ]. Câu 30 (2D1B1-1). Xét tính đơn điệu của hàm số cho bởi công thức. Câu 31 (2D2B3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 32 (1H3B2-3). Xác định góc giữa hai đường thẳng (dùng định nghĩa). Câu 33 (2D3B2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 34 (2H3B3-7). Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Câu 35 (2D4B3-2). Xác định các yếu tố cơ bản của số phức qua các phép toán. Câu 36 (1H3B5-3). Khoảng cách từ một điểm đến một mặt phẳng. Câu 37 (1D2B5-4). Tính xác suất bằng công thức nhân. Câu 38 (2H3B3-2). Viết phương trình đường thẳng. Câu 39 (2D2K6-3). Phương pháp đặt ẩn phụ. Câu 40 (2D1K5-4). Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Câu 41 (2D3K1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 42 (2H1K3-4). Các bài toán khác(góc, khoảng cách,…) liên quan đến thể tích khối đa diện. Câu 43 (2D4K4-2). Định lí Viet và ứng dụng. Câu 44 (2D4G5-1). Phương pháp hình học tìm cực trị số phức. Câu 45 (2D3G3-1). Diện tích hình phẳng được giới hạn bởi các đồ thị. Câu 46 (2H3K3-2). Viết phương trình đường thẳng. Câu 47 (2H2K1-1). Thể tích khối nón, khối trụ. Câu 48 (2D2G6-5). Phương pháp hàm số, đánh giá. Câu 49 (2H2G2-6). Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Câu 50 (2D1G2-1). Tìm cực trị của hàm số cho bởi công thức. PHẦN 2 : PHÂN TÍCH ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. PHẦN 3 : BÀI TẬP CHO HỌC SINH RÈN LUYỆN.
Phát triển đề minh họa ôn thi TN THPT 2022 môn Toán
Tài liệu gồm 57 trang, tuyển chọn 367 câu hỏi và bài toán trắc nghiệm tương tự đề minh họa tốt nghiệp THPT 2022 môn Toán, giúp học sinh lớp 12 ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022. Trích dẫn tài liệu phát triển đề minh họa ôn thi TN THPT 2022 môn Toán: + Cho hàm số y = f(x) xác định trên R có f(−3) > 8, f(4) > 9 2, f(2) < 1 2. Biết rằng hàm số y = f0(x) có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số y = 2f(x) − (x − 1)2 có bao nhiêu điểm cực trị? + Trong không gian Oxyz, cho hai điểm A(1; 3; 0), B(−3; 1; 4) và đường thẳng ∆ : x − 2 −1 = y + 1 1 = z − 2 3. Xét khối nón (N) có đỉnh có tọa độ nguyên thuộc đường thẳng ∆ và ngoại tiếp mặt cầu đường kính AB. Khi (N) có thể tích nhỏ nhất thì tung độ đỉnh của khối nón (N) bằng? + Cho hàm số f (x) = x4 + ax3 + bx2 + cx + d (a, b, c, d ∈ R) có ba điểm cực trị là −1; 1; 2. Hàm số g (x) = mx3 + nx2 + px + q (m, n, p, q ∈ R) là hàm số đạt cực trị tại −1; 1 và và có đồ thị đi qua hai điểm cực trị có hoành độ −1; 1 của đồ thị hàm số y = f(x). Diện tích hình phẳng giới hạn bởi hai đường y = f (x) và y = g (x) bằng? + Cho hai hộp đựng bi, đựng 2 loại bi là bi trắng và bi đen, tổng số bi trong hộp là 20 bi và hộp thứ nhất đựng ít bi hơn hộp thứ hai. Lấy ngẫu nhiên từ mỗi hộp 1 bi. Cho biết xác suất để lấy được 2 bi đen là 55 84, tính xác suất để lấy được 2 bi trắng? + Cho hình lăng trụ đứng ABC · A0B0C0 có đáy ABC là tam giác vuông cân tại B và AB = 4 (tham khảo hình bên). A B C A0 B0 C0. Khoảng cách từ C đến mặt phẳng (ABB0A0) bằng?
25 đề rèn luyện hướng đến kỳ thi tốt nghiệp THPT môn Toán năm học 2021 - 2022
Tài liệu gồm 462 trang, tuyển tập 25 đề rèn luyện hướng đến kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022, có đáp án và lời giải chi tiết. Lời giới thiệu : Chúng tôi từng là học sinh, chúng tôi hiểu được những áp lực của các bạn hiện tại lúc này. Nỗi áp lực về Kinh tế cũng một phần nào làm các bạn trở nên thiệt thòi so với các bạn đồng trang lứa. Vì lý do đó, chúng tôi – những người trẻ nhiệt huyết đến từ “Nhóm Toán anh Dúi”, mong muốn góp một phần nhỏ sức sáng tạo, lòng chân thành và niềm tin tưởng gửi đến các bạn 2k4 năm nay. Tài liệu các bạn đọc bao gồm 25 đề thi thử mà chúng tôi đã soạn và cho các thành viên nhóm chúng tôi thi thử hàng ngày, hàng tuần. Với cách viết cổ điển, chi tiết, chăm chút từng lời giải, phát huy thêm phần ý tưởng sáng tạo “các cách giải nhanh, CASIO” ở một số bài toán. Chúng tôi hy vọng đến tay các bạn, quyển tài liệu này có thể trở nên hữu ích thay vì là một sấp giấy vật vờ trên một góc học tập không được xem đến. Trong Ebook, chúng tôi có sáng tạo và nghiên cứu thêm một số dạng bài tập của các tài liệu từ các Group học tập, các đề thi thử, các tài liệu của quý Thầy, Cô, nhưng với mục đích chỉ vì mong muốn góp một phần sức của mình trong Ngành Giáo dục nước nhà. Tất nhiên, trong quá trình biên soạn, không thể nào tránh khỏi việc sai sót, thiếu sót. Hy vọng chúng tôi vinh hạnh nhận được những lời góp ý chân tình của quý độc giả thông qua thông tin liên hệ dưới đây. Bản Ebook được phát hành miễn phí nên mọi hoạt động sử dụng tài liệu vì mục đích thương mại đều không được cho phép. Chúng tôi xin chân thành cảm ơn quý độc giả.