Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Cần Thơ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Phòng Giáo dục và Đào tạo huyện A chọn một nhóm học sinh cấp Tiểu học và học sinh cấp Trung học cơ sở để tham gia Kỳ thi Violympic cấp tỉnh. Ban đầu, Phòng giáo dục và Đào tạo huyện A dự kiến chọn 60% học sinh Tiểu học trong nhóm học sinh dự thi. Do đơn vị tổ chức không đủ máy vi tính nên Phòng giáo dục và Đào tạo huyện A phải giảm số học sinh dự thi của mỗi cấp là 30. Vì vậy số học sinh Tiểu học được chọn chiếm 62% trong nhóm học sinh dự thi. Hỏi trong nhóm học sinh dự thi theo thực tế có bao nhiêu học sinh của mỗi cấp học? + Anh Bình cần rút tiền trong thẻ ATM để chi tiêu cá nhân nhưng lại quên mật khẩu đăng nhập tài khoản. Biết rằng mật khẩu là một số chính phương A có bốn chữ số nếu bớt đi mỗi chữ số của số A một đơn vị thì được số mới là số chính phương có bốn chữ số. Em hãy giúp anh Bình tìm lại mật khẩu đã quên. + Cho hai đường tròn O R và O R với R cắt nhau tại hai điểm A và B Trên tia đối của tia AB lấy điểm C. Qua điểm C kẻ cách tiếp tuyến CD CE với đường tròn O trong đó D, E là các tiếp điểm và E nằm trong đường tròn O. Các đường thẳng AD, AE cắt đường tròn O lần lượt tại M và N (M và N khác A). Tia DE cắt đoạn thẳng MN tại I. Chứng minh: a) Các điểm B N I E cùng nằm trên một đường tròn b) AE MB AB MI. c) Đường thẳng O I’ vuông góc với đường thẳng MN.

Nguồn: toanmath.com

Đọc Sách

Đề HSG lớp 9 môn Toán vòng 3 năm 2022 2023 phòng GD ĐT Nghi Lộc Nghệ An
Nội dung Đề HSG lớp 9 môn Toán vòng 3 năm 2022 2023 phòng GD ĐT Nghi Lộc Nghệ An Bản PDF - Nội dung bài viết Thông báo đề thi HSG lớp 9 môn Toán vòng 3 năm 2022 2023 tại Nghi Lộc, Nghệ An Thông báo đề thi HSG lớp 9 môn Toán vòng 3 năm 2022 2023 tại Nghi Lộc, Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn đội tuyển tham gia cuộc thi học sinh giỏi cấp tỉnh môn Toán lớp 9 vòng 3 năm học 2022-2023 tại phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An. Đây là cơ hội để các em thể hiện năng lực và kiến thức của mình trong môn Toán, cũng như trau dồi kỹ năng thi cử và tự tin trước những bài thi quan trọng. Đề thi được thiết kế với nhiều dạng bài tập, từ cơ bản đến nâng cao, đảm bảo phản ánh đầy đủ chương trình học của lớp 9, giúp các em rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và sự linh hoạt trong suy nghĩ. Hy vọng các em sẽ cống hiến và đạt kết quả xuất sắc trong kỳ thi sắp tới. Chúc các em học sinh lớp 9 tại Nghi Lộc, Nghệ An sẽ có những bước chuẩn bị tốt nhất cho kỳ thi HSG môn Toán vòng 3 sắp tới. Hãy cố gắng, nỗ lực và tự tin để tỏa sáng trong cuộc thi và đạt được thành tích cao nhất!
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Khánh Hòa
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết GIỚI THIỆU ĐỀ HỌC SINH GIỎI CẤP TỈNH TOÁN THCS NĂM 2022-2023 SỞ GD ĐT KHÁNH HÒA GIỚI THIỆU ĐỀ HỌC SINH GIỎI CẤP TỈNH TOÁN THCS NĂM 2022-2023 SỞ GD ĐT KHÁNH HÒA Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 - 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa. Kỳ thi sẽ diễn ra vào ngày 07 tháng 12 năm 2022, đây là cơ hội cho các em học sinh thể hiện tài năng và kiến thức của mình trong môn Toán. Hãy chuẩn bị kỹ lưỡng và tự tin tham dự để có cơ hội bước tiếp trên con đường học tập và phát triển cá nhân. Chúc các em học sinh thành công trong kỳ thi sắp tới!
Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Lưu Nghệ An
Nội dung Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Lưu Nghệ An Bản PDF - Nội dung bài viết Đề HSG cấp huyện lớp 9 môn Toán năm 2022-2023 Phòng GD&ĐT Quỳnh Lưu Nghệ An Đề HSG cấp huyện lớp 9 môn Toán năm 2022-2023 Phòng GD&ĐT Quỳnh Lưu Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022-2023 của Phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An. Kỳ thi sẽ diễn ra vào ngày 8 tháng 12 năm 2022. Dưới đây là một số câu hỏi trong đề thi: 1. Cho các số thực dương a, b, c thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức Q. 2. Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, K lần lượt là chân đường vuông góc kẻ từ H đến AB, AC. a) Chứng minh: AD.AB = AK.AC b) Chứng minh rằng: Điểm K là điểm tiếp xúc của đường tròn ngoại tiếp tam giác KHC. 3. Cho tam giác ABC vuông cân tại A. Trên hai cạnh AB, AC lấy hai điểm M, N sao cho AM = CN. Xác định vị trí các điểm M, N trên các cạnh AB, AC sao cho đoạn MN đạt giá trị nhỏ nhất. Đây là một số câu hỏi thú vị và thách thức dành cho các em học sinh lớp 9. Chúc các em ôn tập tốt và thành công trong kỳ thi sắp tới.
Đề học sinh giỏi huyện môn Toán năm 2022 2023 phòng GD ĐT Di Linh Lâm Đồng
Nội dung Đề học sinh giỏi huyện môn Toán năm 2022 2023 phòng GD ĐT Di Linh Lâm Đồng Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán năm 2022-2023 phòng GD&ĐT Di Linh, Lâm Đồng Đề học sinh giỏi môn Toán năm 2022-2023 phòng GD&ĐT Di Linh, Lâm Đồng Chào quý thầy cô và các em học sinh lớp 9, đề thi chọn học sinh giỏi môn Toán cấp huyện năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Di Linh, tỉnh Lâm Đồng sẽ diễn ra vào ngày 10 tháng 11 năm 2022. Một số câu hỏi thú vị trong đề thi: 1. Một con Robot được thiết kế để di chuyển theo quy tắc cố định. Nếu robot xuất phát từ vị trí A0 và đi theo quy luật cụ thể để đến vị trí A2022, hỏi khoảng cách giữa điểm xuất phát và điểm đến của con Robot là bao nhiêu? 2. Một đoàn từ thiện phát 22 quyển vở cho các học sinh có hoàn cảnh khó khăn. Nếu bớt đi một phần quà thì có thể chia đều tất cả số vở cho các phần quà mà vẫn còn thừa 1 quyển. Hỏi đoàn từ thiện ban đầu có bao nhiêu quyển vở, biết rằng mỗi phần quà không quá 30 quyển? 3. Cho tam giác vuông ABC có đường cao AH, đường trung tuyến BM và đường phân giác CK cắt nhau tại E. Chứng minh rằng chiều cao hình thang tam giác AHCK bằng nửa tổng các cạnh góc vuông AC và BC. Chúc các em học sinh sẵn sàng và tự tin để làm bài thi tốt nhất!