Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Nội dung Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Bản PDF - Nội dung bài viết Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Trên thực tế, khi chúng ta phân tích đa thức thành nhân tử, đôi khi cần phải kết hợp nhiều phương pháp để có thể phân tích triệt để. Có nhiều phương pháp thông thường mà chúng ta có thể áp dụng, bao gồm: Phương pháp ưu tiên số một: Đặt nhân tử chung. Khi sử dụng phương pháp này, chúng ta cố gắng tìm một nhân tử chung cho các hạng tử của đa thức để dễ dàng phân tích. Phương pháp ưu tiên số hai: Sử dụng hằng đẳng thức. Chúng ta có thể sử dụng hằng đẳng thức để phân tích đa thức thành nhân tử, giúp quá trình phân tích trở nên hiệu quả hơn. Nhóm các hạng tử. Khi chúng ta nhóm các hạng tử lại với nhau, việc phân tích trở nên dễ dàng hơn bằng cách đặt nhân tử chung hoặc sử dụng hằng đẳng thức. Ngoài ra, chúng ta cũng có thể áp dụng các phương pháp nâng cao khác như: Tách một hạng tử thành nhiều hạng tử. Bằng cách này, chúng ta có thể tách một hạng tử thành nhiều hạng tử để dễ dàng phân tích đa thức thành nhân tử. Thêm và bớt cùng một hạng tử. Đôi khi, chúng ta cần tăng thêm hoặc bớt đi các hạng tử để phân tích đa thức, giúp quá trình phân tích trở nên linh hoạt hơn. Đổi biến. Khi gặp đa thức phức tạp, chúng ta có thể sử dụng cách đổi biến để đơn giản hóa đa thức trước khi phân tích thành nhân tử. Thông qua việc kết hợp các phương pháp phân tích, chúng ta có thể giải quyết các bài toán phức tạp và hiệu quả hơn trong quá trình học Toán lớp 8.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hình bình hành
Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình bình hành, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT Định nghĩa: Hình bình hành là tứ giác có các cặp cạnh đối song song. Tính chất: Trong hình bình hành: + Các cạnh đối bằng nhau. + Các góc đối bằng nhau. + Hai đường chéo cắt nhau tại trung điểm mỗi đường. Dấu hiệu nhận biết: + Tứ giác có các cạnh đối song song là hình bình hành. + Tứ giác có các cạnh đối bằng nhau là hình bình hành. + Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành. + Tứ giác có các góc đối bằng nhau là hình bình hành. + Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI CƠ BẢN VÀ NÂNG CAO + Dạng 1. Vận dụng tính chất của hình bình hành để chứng minh các tính chất hình học. Phương pháp giải: Vận dụng định nghĩa và các tính chất về cạnh, góc và đường chéo của hình bình hành. + Dạng 2. Chứng minh tứ giác là hình bình hành. Phương pháp giải: Vận dụng các dấu hiệu nhận biết để chứng minh một tứ giác là hình bình hành. + Dạng 3. Chứng minh ba điểm thẳng hàng, các đường thẳng đồng quy. B. PHIẾU BÀI TỰ LUYỆN CB – NC
Chuyên đề đối xứng trục
Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đối xứng trục, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT + Hai điểm đối xứng qua một đường thẳng: Hai điểm được gọi là đối xứng với nhau qua đường thẳng d nếu d là đường trung trực của đoạn thẳng nối hai điểm ấy. + Hai hình đối xứng qua một đường thẳng: Hai hình gọi là đối xứng với nhau qua đường thẳng d nếu một điểm bất kì thuộc hình này đối xứng với một điểm thuộc hình kia qua đường thẳng d và ngược lại. + Hình có trục đối xứng: Đường thẳng d gọi là trục đối xứng của hình H nếu điểm đối xúng với mỗi điểm thuộc hình H qua đường thẳng d cũng thuộc hình H. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI CƠ BẢN VÀ NÂNG CAO + Dạng 1. Chứng minh hai điểm hoặc hai hình đối xứng với nhau qua một đường thẳng. Phương pháp giải: Sử dụng định nghĩa hai điểm đối xứng hoặc hai hình đối xứng với nhau qua một đường thẳng. + Dạng 2. Sử dụng tính chất đối xứng trục để giải toán. Phương pháp giải: Sử dụng nhận xét hai đoạn thẳng đối xứng vói nhau qua một đường thẳng thì bằng nhau. + Dạng 3. Tổng hợp. B. DẠNG BÀI NÂNG CAO-PHÁT TRIỂN TƯ DUY C. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO ĐỐI XỨNG TRỤC Dạng 1: Chứng minh hai điểm hoặc hai hình đối xứng với nhau qua 1 đường thẳng. Dạng 2: Sử dụng tính chất đối xứng trục để giải toán. Dạng 3: Tìm trực đối xứng của một hình, hình có trục đối xứng. Dạng 4: Dựng hình có sử dụng đối xứng trục. Dạng 5: Tổng hợp.
Chuyên đề đường trung bình của tam giác, của hình thang
Tài liệu gồm 23 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đường trung bình của tam giác, của hình thang, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT 1. Đường trung bình của tam giác + Định nghĩa: Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác. + Định lí 1: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba. + Định lí 2: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy. 2. Đường trung bình của hình thang + Định nghĩa: Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang. + Định lí 3: Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song vói hai đáy thì đi qua trung điểm cạnh bên thứ hai. + Định lí 4: Đường trung bình của hình thang song song với hai đáy và bằng nửa tổng hai đáy. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CƠ BẢN VÀ NÂNG CAO + Dạng 1. Sử dụng định nghĩa và định lí về đường trung bình của tam giác để chứng minh. Phương pháp giải: Sử dụng Định nghĩa đường trung bình của tam giác, Định lí 1, Định lí 2 để suy ra điều cân chứng minh. + Dạng 2. Sử dụng định nghĩa và định lí về đường trung bình của hình thang để chứng minh. Phương pháp giải: Sử dụng Định nghĩa đường trung bình của hình thang, Định lí 3, Định lí 4 để suy ra điều cần chứng minh. + Dạng 3. Sử dụng phối hợp đường trung bình của tam giác và đường trung bình của hình thang để chứng minh. Phương pháp giải: Sử dụng Định nghĩa đường trung bình của tam giác, Định nghĩa đường trung bình của hình thang và các Định lí : 1, 2, 3, 4 để suy ra điều cần chứng minh. + Dạng 4. Tổng hợp. B.CÁC DẠNG BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY + Đường trung bình của tam giác. + Đường trung bình của hình thang. C. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề hình thang cân
Tài liệu gồm 19 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thang cân, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT 1. Khái niệm: Hình thang cân là hình thang có hai góc kề một đáy bằng nhau. 2. Tính chất: + Trong hình thang cân, hai cạnh bên bằng nhau. + Trong hình thang cân, hai đuờng chéo bằng nhau. 3. Dấu hiệu nhận biết: + Hình thang có hai góc kề một cạnh đáy bằng nhau là hình thang cân. + Hình thang có hai đường chéo bằng nhau là hình thang cân. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính số đo góc, độ dài cạnh và diện tích hình thang cân. Phương pháp giải: Sử dụng tính chất hình thang cân về cạnh góc, đường chéo và công thức tính diện tích hình thang để tính toán. Dạng 2. Chứng minh hình thang cân. Phương pháp giải: Sử dụng dấu hiệu nhận biết hình thang cân. Dạng 3. Chứng minh các cạnh bằng nhau, các góc bằng nhau trong hình thang cân. B. PHIẾU BÀI TỰ LUYỆN