Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề diện tích hình thoi

Nội dung Chuyên đề diện tích hình thoi Bản PDF - Nội dung bài viết Một bộ tài liệu chuyên về diện tích hình thoi Một bộ tài liệu chuyên về diện tích hình thoi Tài liệu này bao gồm 14 trang chứa thông tin chi tiết về diện tích hình thoi, được chia thành ba phần chính. Phần I: Kiến thức cơ bản Trong phần này, bạn sẽ được học về cách tính diện tích của tứ giác có hai đường chéo vuông góc và diện tích hình thoi. Đặc biệt, bạn sẽ biết rằng diện tích hình thoi có thể tính bằng nửa tích hai đường chéo hoặc bằng tích của một cạnh với chiều cao. Phần II: Một số dạng bài tập Trong phần này, bạn sẽ được hướng dẫn cách giải các dạng bài tập phổ biến như tính diện tích của tứ giác có hai đường chéo vuông góc và tính diện tích hình thoi. Bạn cũng sẽ tìm hiểu cách tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phần III: Phiếu bài tự luyện Phần cuối cùng cung cấp cho bạn một phiếu bài tập tự luyện để thực hành và kiểm tra kiến thức của mình. Đáp án và lời giải chi tiết sẽ giúp bạn hiểu rõ hơn và nâng cao kỹ năng giải bài tập về diện tích hình thoi.

Nguồn: sytu.vn

Đọc Sách

Đề cương học kì 1 Toán 8 năm 2022 - 2023 trường THCS Thăng Long - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Thăng Long, quận Ba Đình, thành phố Hà Nội. A. PHẦN ĐẠI SỐ I. KIẾN THỨC CƠ BẢN. 1) Các quy tắc nhân,chia đơn thức, đa thức,biết cách chia hai đa thức 1 biến. 2) 7 hằng đẳng thức – các phương pháp phân tích đa thức thành nhân tử. 3) Tính chất cơ bản của phân thức, các quy tắc đổi dấu – quy tắc rút gọn phân thức, tìm mẫu thức chung, quy đồng mẫu thức. 4) Các quy tắc: cộng, trừ các phân thức đại số. II. CÁC BÀI TẬP TỰ LUYỆN. B. PHẦN HÌNH HỌC I. KIẾN THỨC CƠ BẢN. 1) Định nghĩa tứ giác, định lý tổng các góc trong 1 tứ giác. 2) Định nghĩa, tính chất, dấu hiệu nhận biết các hình: hình thang, hình thang cân, hình bình hành, hình chữ nhật, hình thoi, hình vuông. 3) Định nghĩa, tính chất đường trung bình của tam giác, hình thang. 4) Tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông. 5) Định nghĩa về 2 điểm đối xứng với nhau qua 1 đường thẳng, qua 1 điểm. Tính chất của các hình đối xứng với nhau qua 1 điểm, qua 1 đường thẳng. 6) Các tính chất về diện tích đa giác, công thức tính diện tích Hình chữ nhật, Hình vuông, Tam giác. II. CÁC DẠNG TOÁN.
Đề cương giữa kì 1 Toán 8 năm 2022 - 2023 trường THCS thị trấn Văn Điển - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS thị trấn Văn Điển, huyện Thanh Trì, thành phố Hà Nội.
Đề cương ôn tập giữa kì 1 Toán 8 năm 2022 - 2023 trường THCS Thành Công - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Thành Công, quận Ba Đình, thành phố Hà Nội. I. Nội dung ôn tập 1. Đại số: Từ đầu chương 1 đến hết bài “Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp”. 2. Hình học: Từ đầu chương 1 đến hết bài “Hình bình hành”. II. Một số đề tham khảo
Đề cương ôn tập giữa kì 1 Toán 8 năm 2022 - 2023 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội. I. Phần 1 : Nội dung kiến thức cần ôn tập. 1. Các đơn vị kiến thức đã học từ tuần 01 đến hết tuần 06. 2. Một số câu hỏi trọng tâm. Câu 1. Nêu các quy tắc nhân đơn thức với đa thức, đa thức với đa thức. Câu 2. Phát biểu và nêu công thức 7 hằng đẳng thức đáng nhớ. Câu 3. Nêu định nghĩa tứ giác, định lý tổng các góc trong 1 tứ giác. Câu 4. Nêu định nghĩa hình thang, hình thang cân, tính chất và dấu hiệu nhận biết hình thang cân. Câu 5. Nêu định nghĩa, tính chất đường trung bình của tam giác, hình thang. Câu 6. Nêu định nghĩa, tính chất và dấu hiệu nhận biết hình bình hành. Câu 7. Nêu định nghĩa về 2 điểm đối xứng với nhau qua 1 đường thẳng, qua 1 điểm. Tính chất của các hình đối xứng với nhau qua 1 điểm, qua 1 đường thẳng. II. Phần 2 : Một số dạng bài tập minh họa. A. Trắc nghiệm. B. Tự luận.