Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phép cộng các phân thức đại số

Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép cộng các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT 1. Quy tắc cộng hai phân thức cùng mẫu thức: Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức. 2. Quy tắc cộng hai phân thức có mẫu thức khác nhau: Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Cộng xác phân thức đại số thông thường. Sử dụng kết hợp hai quy tắc cộng phân thức đại số. Dạng 2 . Cộng các phân thức đại số có sử dụng quy tắc đối dấu. + Bước 1. Áp dụng quy tắc đổi dấu phân thức: A/B = -A/-B. + Bước 2. Thực hiện tương tự dạng 1. Dạng 3 . Tính giá trị biểu thức tổng các phân thức đại số. + Bước 1. Thực hiện phép cộng các phân thức đại số tương tự dạng 1 và dạng 2. + Bước 2.Thay giá trị của biến vào phân thức và tính. Dạng 4 . Giải toán đố có sử dụng phép cộng các phân thức đại số. + Bước 1. Thiết lập các biểu thức theo yêu cầu của đề bài. + Bước 2. Sử dụng kết hợp hai quy tắc cộng phân thức đại số đã nêu trong phần tóm tắt lý thuyết.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích xung quanh và thể tích của hình lăng trụ đứng
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích xung quanh và thể tích của hình lăng trụ đứng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều.
Chuyên đề hình lăng trụ đứng
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình lăng trụ đứng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Hình lăng trụ đứng. 2. Thí dụ. B. Phương pháp giải toán C. Phiếu bài tự luyện
Chuyên đề hình hộp chữ nhật
Tài liệu gồm 12 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình hộp chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Hình hộp chữ nhật. 2. Mặt phẳng và đường thẳng. 3. Hai đường thẳng song song trong không gian. 4. Đường thẳng song song với mặt phẳng. Hai mặt phẳng song song. B. Phương pháp giải toán Dạng toán 1: Chứng minh các tính chất của hình hộp chữ nhật. Dạng toán 2: Tính toán các yếu tố của hình hộp chữ nhật.
Hướng dẫn ôn tập giữa kì 2 Toán 8 năm 2020 - 2021 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa kì 2 Toán 8 năm học 2020 – 2021 trường Vinschool – Hà Nội, nhằm giúp các em rèn luyện, chuẩn bị cho kỳ kiểm tra khảo sát chất lượng môn Toán 8 giai đoạn giữa học kỳ 2 năm học 2020 – 2021. I. KIẾN THỨC TRỌNG TÂM Phương trình bậc nhất một ẩn: – Phương trình một ẩn, nghiệm của phương trình, giải phương trình, phương trình tương đương. – Phương trình bậc nhất một ẩn và cách giải. – Phương trình đưa được về dạng ax + b = 0. – Phương trình tích. – Phương trình chứa ẩn ở mẫu (dạng toán chuyển động, dạng toán có nội dung số học, dạng toán năng suất, dạng toán có nội dung hình học). Định lý Ta let – Tính chất đường phân giác của tam giác: – Định lý Talet thuận và đảo. – Hệ quả định lý Talet. – Tính chất đường phân giác của tam giác. Tam giác đồng dạng: – Khái niệm hai tam giác đồng dạng. – Các trường hợp đồng dạng của tam giác. II. BÀI TẬP TỰ LUẬN Dạng 1. Giải phương trình. Dạng 2. Giải toán bằng cách lập phương trình. Dạng 3. Hình học tổng hợp. Dạng 4. Nâng cao.