Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đề thi tham khảo tốt nghiệp THPT năm 2023 môn Toán

Tài liệu gồm 87 trang, được biên soạn bởi quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: Trần Ngọc Hùng, Ngụy Như Thái, Quảng Đại Hạn, Quảng Đại Phước, Đàng Xuân Phi, Quảng Đại Mưa, Nguyễn Văn Hồng, hướng dẫn phân tích chi tiết đề thi tham khảo tốt nghiệp THPT năm 2023 môn Toán. Dạng 1: Bài toán chỉ sử dụng P hoặc C hoặc A. Dạng 2: Tính xác suất bằng định nghĩa. Dạng 3: Tìm hạng tử trong cấp số nhân. Dạng 4: Xác định góc giữa hai mặt phẳng, đường và mặt. Dạng 5: Khoảng cách từ một điểm đến một mặt phẳng. Dạng 6: Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Dạng 7: Tìm cực trị dựa vào BBT, đồ thị. Dạng 8: Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Dạng 9: Nhận dạng đồ thị, bảng biến thiên. Dạng 10: Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Dạng 11: Xét tính đơn điệu của hàm số cho bởi công thức. Dạng 12: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng 13: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng 14: Câu hỏi lý thuyết. Dạng 15: Đạo hàm hàm số lũy thừa. Dạng 16: Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Dạng 17: Bất phương trình cơ bản. Dạng 18: Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Dạng 19: Phương pháp đặt ẩn phụ. Dạng 20: Phương pháp đưa về cùng cơ số. Dạng 21: Phương pháp đưa về cùng cơ số. Dạng 22: Phương pháp hàm số, đánh giá. Dạng 23: Định nghĩa, tính chất và tích phân cơ bản. Dạng 24: Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng 25: Định nghĩa, tính chất và tích phân cơ bản. Dạng 26: Thể tích giới hạn bởi các đồ thị (tròn xoay). Dạng 27: Phương pháp đổi biến số. Dạng 28: Diện tích hình phẳng được giới hạn bởi các đồ thị. Dạng 29: Xác định các yếu tố cơ bản của số phức. Dạng 30: Biểu diễn hình học cơ bản của số phức. Dạng 31: Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng 32: Bài toán tập hợp điểm. Dạng 33: Định lí Viet và ứng dụng. Dạng 34: Phương pháp đại số. Dạng 35: Tính thể tích các khối đa diện. Dạng 36: Các bài toán khác (góc, khoảng cách) liên quan đến thể tích khối đa diện. Dạng 37: Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng 38: Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng 39: Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng 40: Xác định VTPT. Dạng 41: Góc. Dạng 42: Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. Dạng 43: Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng 44: Viết phương trình đường thẳng. Dạng 45: Tìm tọa độ điểm liên quan đến đường thẳng. Dạng 46: Các bài toán cực trị. Dạng 47: Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng.

Nguồn: toanmath.com

Đọc Sách

Casio skill trắc nghiệm - Nguyễn Thế Anh, Nguyễn Thế Lực
Tài liệu Casio skill trắc nghiệm ver 1.0 của 2 tác giả Nguyễn Thế Anh và Nguyễn Thế Lực gồm 386 trang với các nội dung: [ads]
Bí kíp Thế Lực 2016
Tài liệu Bí kíp Thế Lực 2016 bản đầy đủ được scan từ cuốn sách cùng tên của tác giả Nguyễn Thế Lực, sách dày 216 trang bao gồm các kinh nghiệm giải toán của tác giả đối với 3 câu phân loại trong đề thi THPT Quốc gia: Phương trình – Oxy và Bất đẳng thức. Nội dung tài liệu : I. Bí kíp phương trình – bất phương trình 1. Giới thiệu, yêu cầu và các phương pháp cơ bản cần nắm vững 2. Basic Skill + Phương trình cho nghiệm đẹp + Phương trình cho nghiệm xấu + Đánh giá sau liên hợp, truy ngược dấu + Một số bài khó bấm máy – thường liên quan đến ẩn phụ 3. Advance Skill + Super Skill: Ép liên hợp + Pro Skill: Ép hàm số 4. Một số bài tập tự luyện có hướng dẫn II. Bí kíp hệ phương trình 1. Khái quát hướng giải hệ phương trình cơ bản và kiến thức cần nắm 2. Cách tìm mối quan hệ giữa x và y bằng máy tính từ 1 phương trình 3. Dạng hệ phải kết hợp 2 phương trình 4. Một số kỹ năng bổ trợ giải hệ phương trình 5. Các bài tập rèn luyện [ads] III. Bí kíp Oxy 1. Các kiến thức cần nhớ 2. Tư duy giải Oxy 3. Các bổ đề phụ cần biết, cách chứng minh và áp dụng 4. Chuẩn hóa Oxy 5. Các bước làm một bài toán Oxy 6. Hệ thống bài tập rèn luyện có lời giải IV. Bí kíp bất đẳng thức 1. Kiến thức cần nhớ và hướng làm chung 2. Bấm máy cày dấu bằng “=” 3. Một số bất đẳng thức đánh giá tại biên 4. Kinh nghiệm giải bất đẳng thức 5. Hệ thống bài tập rèn luyện
Các chuyên đề luyện thi THPT Quốc gia môn Toán - Nguyễn Văn Lực
Tài liệu Các chuyên đề luyện thi THPT Quốc gia môn Toán của tác giả Nguyễn Văn Lực gồm 372 trang. Tài liệu là hệ thống các bài tập được chọn lọc và giải chi tiết, phân loại theo từng chuyên đề.
Kĩ năng sử dụng máy tính Casio trong giải toán - Bùi Thế Việt
Trong các dụng cụ học tập được phép mang vào phòng thi trong các kỳ thi đại học, kỳ thi THPT Quốc Gia thì máy tính cầm tay là dụng cụ không thể thiếu giúp chúng ta tính toán nhanh chóng. Tuy nhiên, máy tính cầm tay sẽ là trợ thủ đắc lực để giải toán, đặc biệt là giải Phương Trình, Hệ Phương Trình, Bất Phương Trình … hay kể cả là Bất Đẳng Thức. Mình (tác giả Bùi Thế Việt) là một người rất đam mê với những kỹ năng, thủ thuật sử dụng máy tính cầm tay trong giải toán. Mình đã áp dụng nó vào đề thi THPT Quốc Gia 2015. Chỉ trong 3 – 5 phút, mình đã đưa ra lời giải chính xác cho câu Phương Trình Vô Tỷ và cũng chỉ gần 1 giờ, mình đã hoàn thành xong bài làm với điểm số tuyệt đối, là 1 trong 85/671.149 người được điểm tối đa. Vậy sử dụng sao cho hiệu quả? Hãy đến với chuyên đề Kỹ Năng Sử Dụng CASIO Trong Giải Toán. Chuyên đề này chưa phải là tất cả những Thủ Thuật mà mình đưa tới cho bạn đọc. Tuy không nhiều nhưng các thủ thuật dưới đây sẽ mang tới sự kỳ diệu mà chiếc máy tính CASIO có thể mang lại. [ads] Chuyên đề giới thiệu 8 kĩ năng sử dụng máy tính CASIO trong việc giải toán: 1. Thủ thuật sử dụng CASIO để rút gọn biểu thức. 2. Thủ thuật sử dụng CASIO để giải phương trình bậc 4. 3. Thủ thuật sử dụng CASIO để tìm nghiệm phương trình. 4. Thủ thuật sử dụng CASIO để phân tích đa thức thành nhân tử một ẩn. 5. Thủ thuật sử dụng CASIO để phân tích đa thức thành nhân tử hai ẩn. 6. Thủ thuật sử dụng CASIO để giải hệ phương trình. 7. Thủ thuật sử dụng CASIO để tích nguyên hàm, tích phân. 8. Thủ thuật sử dụng CASIO để giải bất đẳng thức.