Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi học sinh giỏi Toán 11 sở GDĐT Quảng Bình (2010 - 2023)

Tài liệu gồm 94 trang, được tổng hợp bởi thầy giáo Nguyễn Minh Hiếu, tuyển tập 12 đề thi chọn học sinh giỏi môn Toán lớp 11 sở Giáo dục và Đào tạo tỉnh Quảng Bình (từ năm 2010 đến năm 2023), có đáp án và lời giải chi tiết. Mục lục : PHẦN I ĐỀ THI 1. 1 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2022 – 2023 3. 2 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2021 – 2022 5. 3 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2020 – 2021 7. 4 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2017 – 2018 9. 5 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2016 – 2017 10. 6 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2015 – 2016 11. 7 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2014 – 2015 13. 8 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2013 – 2014 15. 9 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2012 – 2013 17. 10 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2011 – 2012 18. 11 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2010 – 2011 19. 12 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2009 – 2010 20. PHẦN II LỜI GIẢI 21. 1 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2022 – 2023 23. 2 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2021 – 2022 31. 3 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2020 – 2021 39. 4 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2017 – 2018 48. 5 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2016 – 2017 52. 6 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2015 – 2016 56. 7 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2014 – 2015 63. 8 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2013 – 2014 69. 9 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2012 – 2013 74. 10 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2011 – 2012 79. 11 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2010 – 2011 82. 12 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2009 – 2010 87.

Nguồn: toanmath.com

Đọc Sách

Đề HSG lớp 11 môn Toán cấp trường năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề HSG lớp 11 môn Toán cấp trường năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Nhằm kiểm tra khảo sát chất lượng đội tuyển học sinh giỏi Toán lớp 11, vừa qua, trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh đã tổ chức kỳ thi chọn học sinh giỏi cấp trường môn thi Toán lớp 11 năm học 2019 – 2020. Đề HSG Toán lớp 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh gồm có 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề HSG Toán lớp 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;3). Các điểm I (6;6), J(4;5) lần lượt là tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp tam giác ABC. Tìm tọa độ các đỉnh B và C biết hoành độ điểm B lớn hơn hoành độ điểm C. [ads] + Có hai cái hộp đựng tất cả 15 viên bi, các viên bi chỉ có 2 màu đen và trắng. Lấy ngẫu nhiên từ mỗi hộp 1 viên bi. Biết số bi ở hộp 1 nhiều hơn hộp 2, số bi đen ở hộp 1 nhiều hơn số bi đen ở hộp 2 và xác suất để lấy được 2 viên đen là 5/28. Tính xác suất để lấy được 2 viên trắng. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = b, cạnh bên SA vuông góc với đáy. a) Gọi I, J lần lượt là trung điểm của SB và CD. Biết đường thẳng IJ tạo với mặt phẳng (ABCD) một góc 60 độ. Tính độ dài đoạn thẳng SA. b) (α) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M và N. Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi. File WORD (dành cho quý thầy, cô):
Đề Olympic lớp 11 môn Toán năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội
Nội dung Đề Olympic lớp 11 môn Toán năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội Bản PDF Sytu giới thiệu đến bạn đọc đề thi Olympic Toán lớp 11 năm học 2018 – 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội, đề gồm 01 trang với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài thi. Trích dẫn đề Olympic Toán lớp 11 năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội : + Trong một hộp kín đựng 100 tấm thẻ như nhau được đánh số từ 1 đến 100. Lấy ngẫu nhiên ba tấm thẻ trong hộp. Tính xác suất để lấy được ba tấm thẻ mà ba số ghi trên ba tấm thẻ đó lập thành một cấp số cộng. [ads] + Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng nhau. Điểm M di động trên cạnh AB, điểm N di động trên cạnh A’D’ sao cho A’N = 2AM. Gọi (a) là mặt phẳng chứa MN và song song với AC. Dựng thiết diện của hình hộp bởi (a) và chứng minh rằng (a) luôn chứa một đường thẳng cố định. + Cho tứ diện ABCD. Chứng minh rằng: (AB + CD)^2 + (AD + BC)^2 > (AC + BD)?.
Đề học sinh giỏi lớp 11 môn Toán cấp trường năm 2018 2019 trường Lưu Hoàng Hà Nội
Nội dung Đề học sinh giỏi lớp 11 môn Toán cấp trường năm 2018 2019 trường Lưu Hoàng Hà Nội Bản PDF Đề học sinh giỏi Toán lớp 11 cấp trường năm học 2018 – 2019 trường THPT Lưu Hoàng – Hà Nội có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán lớp 11 cấp trường năm 2018 – 2019 trường Lưu Hoàng – Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD). a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông. b) M là điểm di động trên đoạn BC và BM = x, K là hình chiếu của S trên DM. Tính độ dài đoạn SK theo a và x. Tính giá trị nhỏ nhất của đoạn SK. + Một người bỏ ngẫu nhiên 4 lá thư và 4 chiếc phong bì thư đã để sẵn địa chỉ. Tính xác suất để có ít nhất một lá thư bỏ đúng địa chỉ. + Trong mặt phẳng Oxy, cho đường tròn (C1), đường tròn (C2). a) Tìm giao điểm của hai đường tròn (C1) và (C2). b) Gọi giao điểm có tung độ dương của (C1) và (C2) là A viết phương trình đường thẳng đi qua A cắt (C1) và (C2) theo hai dây cung có độ dài bằng nhau.