Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 9 năm 2020 - 2021 phòng GDĐT Bắc Từ Liêm - Hà Nội

Đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Bắc Từ Liêm – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Bắc Từ Liêm – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có chu vi là 124m. Nếu tăng chiều dài thêm 5m và chiều rộng thêm 3m thì diện tích mảnh vườn tăng thêm 255m2. Tính chiều dài và chiều rộng của mảnh vườn ban đầu? + Tính diện tích mặt bàn hình tròn có đường kính 1,2 m (kết quả làm tròn đến chữ số thập phân thứ hai). + Cho nửa đường tròn (O;R), đường kính AB. Trên tia tiếp tuyến kẻ từ A của nửa đường tròn này lấy điểm C sao cho AC > R. Từ C kẻ tiếp tuyến thứ hai CD của nửa đường tròn (O;R), với D là tiếp điểm. Gọi H là giao điểm của AD và OC. 1) Chứng minh: ACDO là tứ giác nội tiếp. 2) Đường thẳng BC cắt đường tròn (O;R) tại điểm thứ hai là M. Chứng minh: CD2 = CM.CB. 3) Gọi K là giao điểm của AD và BC. Chứng minh: MHC = CBO và CM/CB = KM/KB.

Nguồn: toanmath.com

Đọc Sách

Đề học kì 2 Toán 9 năm 2021 - 2022 hệ thống giáo dục Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kì 2 môn Toán 9 năm học 2021 – 2022 hệ thống giáo dục Archimedes School, thành phố Hà Nội. Trích dẫn đề học kì 2 Toán 9 năm 2021 – 2022 hệ thống giáo dục Archimedes School – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường AB dài 108 km. Hai ô tô cùng khởi hành một lúc để đi từ A đến B. Biết ô tô thứ nhất mỗi giờ chạy nhanh hơn ô tô thứ hai 6 km nên ô tô thứ hai đến B muộn hơn ô tô thứ nhất là 12 phút. Tính vận tốc của mỗi xe. + Một bể nước hình trụ có bán kính hình tròn đáy là 0,5m, chiều cao là 1m. Một máy bơm bơm nước vào bể, mỗi phút bơm được 20 lít. Sau khi bơm được nửa giờ người ta tắt máy. Hỏi nước đã tràn bể hay chưa? (lấy pi = 3,14). + Cho parabol (P): y = x² và đường thẳng (d): y = mx – m + 1/2 a) Khi m = 3, tìm tọa độ giao điểm của (d) và (P) b) Tìm m để (d) cắt (P) tại hai điểm phân biệt đối xứng nhau qua trục tung.
Đề học kì 2 Toán 9 năm 2020 - 2021 phòng GDĐT thị xã Ninh Hòa - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng học kì 2 môn Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo thị xã Ninh Hòa, tỉnh Khánh Hòa; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT thị xã Ninh Hòa – Khánh Hòa : + Trong mặt phẳng Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = mx − 4. a) Vẽ đồ thị (P). b) Xác định m để (d) tiếp xúc với (P). + Cho phương trình x2 − (m + 4)x + 3m + 3 = 0 (1) (với m là tham số). a) Chứng minh phương trình (1) luôn có nghiệm với mọi giá trị của m. b) Gọi x1; x2 là hai nghiệm của phương trình (1). Tìm tất cả các giá trị dương của m để biểu thức 2 2 x x x x 8 1 1 2 2. + Từ điểm M ở ngoài đường tròn (O), kẻ hai tiếp tuyến MA và MB với đường tròn (O), A và B là các tiếp điểm. Gọi E là trung điểm của đoạn thẳng MB; C là giao điểm của AE và (O) (điểm C khác điểm A), H là giao điểm của AB và MO. a) Chứng minh 4 điểm M, A, O, B cùng thuộc một đường tròn. b) Chứng minh EB2 = EC.EA. c) Chứng minh HCEB là một tứ giác nội tiếp. d) Gọi D là giao điểm của MC và (O) (điểm D khác điểm C). Chứng minh ABD là tam giác cân.
Đề kiểm tra cuối kỳ 2 Toán 9 năm 2020 - 2021 trường THCS Nguyễn Thị Lựu - Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối kỳ 2 Toán 9 năm học 2020 – 2021 trường THCS Nguyễn Thị Lựu, thành phố Cao Lãnh, tỉnh Đồng Tháp, đề thi có đáp án, hướng dẫn giải và thang chấm điểm.
Đề kiểm tra học kỳ 2 Toán 9 năm 2020 - 2021 sở GDĐT tỉnh Đồng Nai
Đề kiểm tra học kỳ 2 Toán 9 năm 2020 – 2021 sở GD&ĐT tỉnh Đồng Nai gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày … tháng 05 năm 2021. Trích dẫn đề kiểm tra học kỳ 2 Toán 9 năm 2020 – 2021 sở GD&ĐT tỉnh Đồng Nai : + Cho hàm số y = x2/2 có đồ thị là (P). 1) Xét tính đồng biến, nghịch biến của hàm số đã cho và vẽ đồ thị (P) trên mặt phẳng tọa độ Oxy. 2) Hãy cho biết điểm nào trong hai điểm M(-10;50) và N(10;-50) thuộc đồ thị (P)? + Hội trường của nhà trường có 350 ghế ngồi được sắp xếp thành một số dãy ghế mà số ghế của mỗi dãy đều bằng nhau, mỗi ghế chỉ một người ngồi; trong lễ khen thưởng học sinh giỏi có 300 học sinh và đại biểu tham dự nên hội trường sắp xếp giảm 5 dãy ghế và mỗi dãy ghế còn lại đều sắp xếp tăng thêm 1 ghế. Hỏi ban đầu hội trường có bao nhiêu dãy ghế và mỗi dãy ghế có bao nhiêu ghế? + Cho hình vuông ABCD có cạnh bằng a, với 0 < a thuộc R. Tính theo a diện tích toàn phần của hình trụ tạo thành khi quay hình vuông ABCD quanh đường thẳng AB.