Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2018 2019 trường THPT Marie Curie Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2018 2019 trường THPT Marie Curie Hà Nội Bản PDF Đề thi học kỳ 1 Toán lớp 11 năm học 2018 – 2019 trường THPT Marie Curie – Hà Nội có mã đề 003 gồm 2 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 16 câu, chiếm 40% số điểm, phần tự luận gồm 3 câu, chiếm 60% số điểm, học sinh có 90 để hoàn thành bài thi, kỳ thi nhằm đánh giá lại toàn diện kiến thức môn Toán của học sinh khối 11 trường THPT Marie Curie, thành phố Hà Nội trong giai đoạn học kỳ 1 vừa qua để làm cơ sở đánh giá, xếp loại học lực, phát hiện các em học sinh giỏi môn Toán lớp 11 … Trích dẫn đề thi học kỳ 1 Toán lớp 11 năm học 2018 – 2019 trường THPT Marie Curie – Hà Nội : + Gọi P là tập các số tự nhiên gồm 4 chữ số khác nhau được lập từ tập {1,2,5,7,8}. Chọn ngẫu nhiên tự P một số tự nhiên. Tính xác suất để số được chọn lớn hơn 2018. [ads] + Hai học sinh A và B (trường THPT Marie Curie, Hà Nội) cùng chơi ném bóng rổ. Biết xác suất ném trúng rổ của A và B lần lượt là 0.6 và 0.7. Xác suất để trong một lượt ném của A và B, có ít nhất một bạn ném trúng rổ là? + Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SC và AB. Chứng minh OM // (SAB). Xác định giao điểm của BM với (SAD). Gọi (α) là mặt phẳng chứa MN và (α) // AD. Xác định và tính điện tích thiết diện tạo bởi (α) với hình chóp biết rằng tất cả các cạnh của hình chóp đều bằng 10cm.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 11 năm học 2016 - 2017 trường THPT Trung Giã - Hà Nội
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường THPT Trung Giã – Hà Nội gồm 50 câu hỏi trắc nghiệm khách quan, có đáp án. Trích một số bài toán trong đề thi: + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm của SA. Thiết diện của hình chóp cắt bởi mặt phẳng (IBC) là: A. Tứ giác IBCD B. Hình thang IGBC C. Hình thang IJCB (J là trung điểm của SD) D. Tam giác IBC + Tìm mệnh đề sai trong các mệnh đề sau: A. Nếu hai đường thẳng phân biệt cùng song song với một mặt phẳng thì chúng song song với nhau. B. Nếu một đường thẳng cắt một trong hai mặt phẳng song song với nhau thì sẽ cắt mặt phẳng còn lại. C. Nếu hai mặt phẳng phân biệt cùng song song với một mặt phẳng thứ ba thì chúng song song. D. Nếu hai mặt phẳng có một điểm chung thì chúng còn vô số điểm chung khác nữa. + Trong một môn học, cô giáo có 30 câu hỏi khác nhau trong đó có 15 câu hỏi khó, 10 câu hỏi trung bình và 5 câu hỏi dễ. Hỏi cô giáo có bao nhiêu cách để lập ra đề thi từ 30 câu hỏi đó, sao cho mỗi đề có 5 câu hỏi khác nhau và mỗi đề phải có đủ ba loại câu hỏi ?
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An - Hà Nội 2014 - 2015
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An – Hà Nội năm học 2014 – 2015 gồm 5 bài toán, có đáp án và thang điểm. Trích một số bài toán trong đề thi: + Một bình chứa 15 quả cầu, với 4 quả cầu xanh, 5 quả cầu đỏ và 6 quả cầu vàng. Lấy ngẫu nhiên 4 quả cầu. Tính xác suất để trong 4 quả cầu lấy được có đủ ba màu. + Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB song song với CD. Gọi M, N lần lượt là trung điểm của các cạnh SA, SB và P là điểm thuộc cạnh BC sao cho BP = 3PC. 1. Tìm giao tuyến của mặt phẳng (MNP) và mặt phẳng (SCD). 2. Tìm giao điểm của đường thẳng MP và mặt phẳng (SBD).
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An - Hà Nội 2014 - 2015
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An – Hà Nội năm học 2014 – 2015 gồm 5 bài toán, có đáp án và thang điểm Trích một số bài toán trong đề: + Từ các chữ số thuộc tập hợp A = {0,1,2,3,4,5}, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau trong đó nhất thiết phải có mặt chữ số 1 và chữ số 2? + Gieo một con súc sắc 3 lần liên tiếp. Tính xác suất để trong 3 lần gieo có ít nhất 2 lần mặt xuất hiện là 6 chấm. + Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(1; -1) và đường thẳng d: 2x – 3y – 2 = 0. Viết phương trình đường thẳng d ‘ là ảnh của đường thẳng d qua phép đối xứng tâm A. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh SA, CD. 1. Tìm giao tuyến của hai mặt phẳng (EFD) và (SAB). 2. Xác định giao điểm của đường thẳng EF với mặt phẳng (SBD).
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An - Hà Nội 2013 - 2014
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 6 bài toán, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề thi: + Có 4 đồ vật đôi một khác nhau được chia hết cho ba người. Hỏi có bao nhiêu cách chia để mỗi người có ít nhất một đồ vật. + Gieo một con súc sắc (được chế tạo cân đối, đồng chất) hai lần liên tiếp. Tính xác suất để tổng số chấm trên mặt xuất hiện của con súc sắc trong hai lần gieo là một số lẻ. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. M và N lần lượt là trung điểm các cạnh SA, CD. 1. Chứng minh MN song song với mặt phẳng (SBC). 2. (a) là mặt phẳng qua M, song song với AN và SC. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (a). 3. Mặt phẳng (a) cắt đường thẳng SB tại I. Tính tỉ số IS/IB