Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tổ hợp - xác suất - Bùi Trần Duy Tuấn

giới thiệu đến bạn đọc tài liệu chuyên đề tổ hợp – xác suất do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 180 trang bao gồm kiến thức cơ bản, phân dạng toán, ví dụ minh họa và tuyển chọn các bài tập trắc nghiệm có lời giải chi tiết các chủ đề quy tắc đếm, hoán vị – chỉnh hợp – tổ hợp, tính toán liên quan đến các công thức, nhị thức NewTơn, biến cố và xác suất của biến cố trong chương trình Đại số và Giải tích 11 chương 2. Tài liệu thích hợp với học sinh khối 11 trong quá trình tự học chương tổ hợp – xác suất và học sinh khối 12 nhằm ôn tập lại các kiến thức tổ hợp – xác suất đã học để chuẩn bị cho kỳ thi THPT Quốc gia. CHỦ ĐỀ 1 : QUY TẮC ĐẾM A. Kiến thức cơ bản cần nắm 1. Quy tắc cộng 2. Quy tắc nhân 3. Các bài toán đếm cơ bản B. Một số bài toán minh họa C. Bài tập trắc nghiệm CHỦ ĐỀ 2 : HOÁN VỊ – CHỈNH HỢP – TỔ HỢP A. Kiến thức cơ bản cần nắm 1. Hoán vị 2. Chỉnh hợp 3. Tổ hợp B. Một số bài toán điển hình C. Bài tập trắc nghiệm + Dạng 1. Bài toán đếm + Dạng 2. Xếp vị trí – cách chọn, phân công công việc + Dạng 3. Đếm tổ hợp liên quan đến hình học CHỦ ĐỀ 3 : TÍNH TOÁN LIÊN QUAN ĐẾN CÁC CÔNG THỨC A. Nhắc lại các công thức B. Bài tập trắc nghiệm [ads] CHỦ ĐỀ 4 : NHỊ THỨC NEWTƠN A. Kiến thức cần nắm 1. Công thức nhị thức Newtơn 2. Tam giác Pascal B. Các dạng toán liên quan đến nhị thức Newtơn 1. Xác định các hệ số trong khai triển nhị thức Newtơn a. Tìm hệ số của số hạng chứa x^m trong khai triển (ax^p + bx^q)^n b. Xác định hệ số lớn nhất trong khai triển nhị thức Niutơn c. Xác định hệ số của số hạng trong khai triển P(x) = (ax^t + bx^p + cx^q)^n 2. Các bài toán tìm tổng a. Thuần nhị thức Newton b. Sử dụng đạo hàm cấp 1, cấp 2 c. Sử dụng tích phân C. Bài tập trắc nghiệm + Dạng 1. Xác định các hệ số, số hạng trong khai triển nhị thức Newton + Dạng 2. Các bài toán tìm tổng CHỦ ĐỀ 5 : BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ A. Kiến thức cần nắm 1. Phép thử ngẫu nhiên và không gian mẫu 2. Biến cố 3. Xác suất của biến cố B. Các dạng toán về xác suất 1. Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm a. Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố b. Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp 2. Sử dụng quy tắc tính xác suất a. Phương pháp b. Một số bài toán minh họa C. Bài tập trắc nghiệm + Dạng 1. Xác định phép thử, không gian mẫu và biến cố + Dạng 2. Tìm xác suất của biến cố + Dạng 3. Các quy tắc tính xác suất

Nguồn: toanmath.com

Đọc Sách

Chuyên đề một số yếu tố thống kê và xác suất Toán 10 Cánh Diều
Tài liệu gồm 169 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề một số yếu tố thống kê và xác suất trong chương trình SGK Toán 10 Cánh Diều (viết tắt: Toán 10 CD), có đáp án và lời giải chi tiết. BÀI 1 . SỐ GẦN ĐÚNG. SAI SỐ. + Dạng 1. Tính sai số tuyệt đối, độ chính xác của một số gần đúng. + Dạng 2. Sai số tương đối của số gần đúng. + Dạng 3. Quy tròn số gần đúng. + Dạng 4. Xác định các chữ số chắc của một số gần đúng, dạng chuẩn của chữ số gần đúng và kí hiệu khoa học của một số. BÀI 2 . CÁC SỐ ĐẶC TRƯNG ĐO XU THẾ TRUNG TÂM CHO MẪU SỐ LIỆU KHÔNG GHÉP NHÓM. BÀI 3 . CÁC SỐ ĐẶC TRƯNG ĐO ĐỘ PHÂN TÁN CHO MẪU SỐ LIỆU KHÔNG GHÉP NHÓM. BÀI 4 + BÀI 5 . XÁC SUẤT CỦA BIẾN CỐ TRONG MỘT SỐ TRÒ CHƠI ĐƠN GIẢN. XÁC SUẤT CỦA BIẾN CỐ. + Dạng 1. Mô tả biến cố, không gian mẫu. + Dạng 2. Mối liên hệ giữa các biến cố. + Dạng 3. Xác định không gian mẫu và biến cố. + Dạng 4. Tính xác suất theo định nghĩa cổ điển. + Dạng 5. Quy tắc tính xác suất.
Chuyên đề tính xác suất theo định nghĩa cổ điển Toán 10 KNTTvCS
Tài liệu gồm 94 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề tính xác suất theo định nghĩa cổ điển trong chương trình SGK Toán 10 Kết Nối Tri Thức Với Cuộc Sống (KNTTvCS), có đáp án và lời giải chi tiết. Bài 26 – 27 . Biến cố và định nghĩa cổ điển của xác suất. 1. Lý thuyết. 2. Hệ thống bài tập tự luận. Dạng 1. Mô tả biến cố, không gian mẫu. Dạng 2. Mối liên hệ giữa các biến cố. Dạng 3. Xác định không gian mẫu và biến cố. + Phương pháp 1. Liệt kê các phần tử của không gian mẫu và biến cố rồi đếm. + Phương pháp 2. Sử dụng các quy tắc đếm, các kiến thức về hoán vị, chỉnh hợp, tổ hợp để xác định số phần tử của không gian mẫu và biến cố. Dạng 4. Tính xác suất theo định nghĩa cổ điển. + Tính xác suất theo thống kê ta sử dụng công thức. P(A) = n/N. + Tính xác suất của biến cố theo định nghĩa cổ điển ta sử dụng công thức. P(A) = n(A)/n(O) = |OA|/|O|. Dạng 5. Quy tắc tính xác suất. 3. Hệ thống bài tập trắc nghiệm.
Bài giảng xác suất của biến cố
Tài liệu gồm 18 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề xác suất của biến cố, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2: Tổ Hợp Và Xác Suất. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Hiểu được khái niệm biến cố và phân biệt được các biến cố giao, biến cố hợp, biến cố đối và biến cố độc lập. + HIểu được định nghĩa xác suất của biến cố và tính chất của xác suất. + Nắm vững công thức cộng xác suất và công thức nhân xác suất. Kĩ năng: + Tính được xác suất của biến cố trong các bài toán xác suất cổ điển. + Vận dụng quy tắc tính xác suất trong các bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. + Dạng 1: Sử dụng định nghĩa cổ điển về xác suất. + Dạng 2: Các bài tập sử dụng quy tắc tính xác suất. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Tài liệu chủ đề xác suất
Tài liệu gồm 52 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề xác suất, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. I. KIẾN THỨC TRỌNG TÂM 1) Phép thử và Không gian mẫu. 2) Biến cố. 3) Các phép toán với biến cố. 4) Xác suất của biến cố (định nghĩa cổ điển). 5) Các quy tắc tính xác suất. 6) Xác suất của biến cố đối. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1: Tính xác suất bằng định nghĩa cổ điển. Dạng 2: Tính xác suất thông qua biến cố đối. Dạng 3: Tính xác suất thông qua các quy tắc cộng và nhân. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.