Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 11 môn Toán năm 2022 2023 cụm THPT huyện Yên Dũng Bắc Giang

Nội dung Đề thi HSG lớp 11 môn Toán năm 2022 2023 cụm THPT huyện Yên Dũng Bắc Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp cơ sở môn Toán lớp 11 năm học 2022 – 2023 cụm trường THPT huyện Yên Dũng, tỉnh Bắc Giang; đề thi gồm 40 câu trắc nghiệm – 14 điểm và 03 câu tự luận – 06 điểm, thời gian: 120 phút (không kể thời gian phát đề); đề thi có hướng dẫn giải và đáp án mã đề 201 và 202. Trích dẫn Đề thi HSG Toán lớp 11 năm 2022 – 2023 cụm THPT huyện Yên Dũng – Bắc Giang : + Cho một hình vuông, mỗi cạnh của hình vuông đó được chia thành n đoạn bằng nhau bởi n −1 điểm chia (không tính 2 đầu mút mỗi cạnh). Xét các tứ giác có 4 đỉnh là 4 điểm chia trên 4 cạnh của hình vuông đã cho. Gọi a là số tứ giác tạo thành và b là số các hình bình hành trong a tứ giác đó. Giá trị của n thỏa mãn a b 9 là? + Cho tam giác ABC có độ dài các cạnh là abc theo thứ tự lập thành một cấp số cộng. Biết tan tan 2 2 A Cx y với x y thuộc N và x y nguyên tố cùng nhau, giá trị 2x y là? + Cho tứ diện ABCD. Các điểm M N lần lượt là trung điểm của các đoạn thẳng AB và CD; điểm G là trọng tâm của tam giác BCD. Gọi I là giao điểm của hai đường thẳng MN và AG. Tính tỉ số IA IG. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG lớp 11 môn Toán năm học 2019 2020 trường THPT thị xã Quảng Trị
Nội dung Đề thi chọn HSG lớp 11 môn Toán năm học 2019 2020 trường THPT thị xã Quảng Trị Bản PDF Ngày 12 tháng 06 năm 2020, trường THPT thị xã Quảng Trị tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 11 môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán lớp 11 năm học 2019 – 2020 trường THPT thị xã Quảng Trị gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài thi là 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn HSG Toán lớp 11 năm học 2019 – 2020 trường THPT thị xã Quảng Trị : + Một tổ gồm 10 học sinh gồm 6 học sinh nam và 4 học sinh nữ trong đó có hai học sinh nữ tên Trang và Thủy. Xếp ngẫu nhiên 10 học sinh trên thành một hàng ngang. Tính xác suất để xếp được một hàng ngang mà hai học sinh nữ Trang và Thủy luôn đứng cạnh nhau, đồng thời các học sinh nữ còn lại không đứng cạnh nhau và cũng không đứng cạnh Trang và Thủy. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC = 30 độ và BC = 2a. Gọi H là hình chiếu vuông góc của A lên BC. Biết hai mặt phẳng (SHA) và (SBC) cùng vuông góc với mặt phẳng (ABC), đồng thời SA tạo với mặt phẳng (ABC) một góc bằng 60 độ. a) Tính góc tạo bởi SA và mặt phẳng (SBC). b) Tính khoảng cách từ B đến mặt phẳng (SAC) theo a. [ads] + Trong mặt phẳng Oxy, cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên BC, các điểm M, N lần lượt là trung điểm của HB và HC; điểm K là trực tâm tam giác AMN. a) Gọi I là trung điểm của AH. Chứng minh rằng K là trung điểm của IH. b) Tìm tọa độ điểm A; biết M(2;-1), K(-1/2;1/2) và điểm A nằm trên đường thẳng x + 2y + 4 = 0 đồng thời điểm A có tung độ âm.
Đề thi chọn HSG lớp 11 môn Toán năm 2019 2020 trường chuyên Lê Quý Đôn BR VT
Nội dung Đề thi chọn HSG lớp 11 môn Toán năm 2019 2020 trường chuyên Lê Quý Đôn BR VT Bản PDF Thứ Bảy ngày 13 tháng 06 năm 2020, trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2019 – 2020. Đề thi chọn HSG Toán lớp 11 năm 2019 – 2020 trường THPT chuyên Lê Quý Đôn – BR VT gồm 01 trang với 05 bài toán dạng tự luận, học sinh làm bài trong khoảng thời gian 180 phút. Trích dẫn đề thi chọn HSG Toán lớp 11 năm 2019 – 2020 trường chuyên Lê Quý Đôn – BR VT : + Cho tam giác ABC đều, tâm H và có độ dài cạnh là a. Đường thẳng d vuông góc với mặt phẳng (ABC) tại điểm A. Điểm M thay đổi trên đường thẳng d, AM = x (x > 0). Gọi K là trực tâm tam giác MBC. Chứng minh đường thẳng HK vuông góc với mặt phẳng (MBC) và tìm x để khoảng cách từ điểm K đến mặt phẳng (ABC) đạt giá trị lớn nhất. [ads] + Xét hình chóp S.ABC thay đổi sao cho các cạnh SA, SB, SC đôi một vuông góc với nhau. Gọi M, N, P là trung điểm các cạnh BC, CA, AB. Kí hiệu α, β, γ lần lượt là góc tạo bởi mặt phẳng (ABC) với các mặt phẳng (SMN), (SNP), (SPM). Tìm giá trị lớn nhất của biểu thức T = sinα + sinβ + sinγ. + Có một số kiện hàng đã được đóng gói với tổng khối lượng là 3 tấn. Mỗi kiện hàng có khối lượng không quá 500 kilôgam. Chứng minh rằng người ta có thể sử dụng 4 chiếc xe tải, mỗi xe chở không quá 1 tấn để chở tất cả các kiện hàng nói trên.
Đề thi chọn học sinh giỏi lớp 11 môn Toán năm 2019 2020 sở GD ĐT Thái Nguyên
Nội dung Đề thi chọn học sinh giỏi lớp 11 môn Toán năm 2019 2020 sở GD ĐT Thái Nguyên Bản PDF Thứ Sáu ngày 29 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Nguyên tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh môn Toán lớp 11 năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán lớp 11 năm 2019 – 2020 sở GD&ĐT Thái Nguyên gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi chọn học sinh giỏi Toán lớp 11 năm 2019 – 2020 sở GD&ĐT Thái Nguyên : + Cho tam giác ABC có ba góc nhọn (AB < BC < AC) nội tiếp đường tròn (O;R). Vẽ đường tròn tâm O’ lần lượt tiếp xúc với các cạnh BC, AC tại D, E và tiếp xúc trong với đường tròn (O;R) tại T. Đường thẳng TD cắt đường tròn (O;R) tại K (K khác T). Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh KC = KB và ba điểm D, I, E thẳng hàng. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng đáy và SA = 2a. Mặt phẳng (P) chứa BC và cắt các cạnh SA, SD lần lượt tại M, N. Góc giữa đường thẳng AC và (P) bằng 30 độ. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. + Cho tập hợp X = {1;2;3;4;…;3^n}. Chứng minh rằng, với mọi số tự nhiên n ≥ 2 luôn tồn tại tập con M của tập hợp X sao cho tập con M có 2n phần tử và không có ba phần tử nào lập thành một cấp số cộng.