Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG thành phố lớp 12 môn Toán năm 2019 2020 sở GD ĐT Hải Phòng

Nội dung Đề chọn HSG thành phố lớp 12 môn Toán năm 2019 2020 sở GD ĐT Hải Phòng Bản PDF Ngày 19 tháng 09 năm 2019, sở Giáo dục và Đào tạo Hải Phòng tổ chức kỳ thi chọn học sinh giỏi thành phố môn Toán lớp 12 năm học 2019 – 2020. Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn HSG thành phố Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Hải Phòng, đề thi dành cho bảng không chuyên, đề gồm 01 trang với 07 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề chọn HSG thành phố Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Hải Phòng : + Cho hình lăng trụ đứng ABC.A’B’C’ có AB = a, AC = 2a, AA’ = 2a√5 và góc BAC bằng 120 độ. Gọi M là trung điểm của cạnh CC’. a) Chứng minh rằng MB vuông góc với A M’. b) Tính khoảng cách từ điểm A đến mặt phẳng (A’BM) theo a. [ads] + Từ tập hợp tất cả các số tự nhiên có 5 chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Tính xác suất để trong số tự nhiên được lấy ra có mặt đúng ba chữ số khác nhau. + Trong mặt phẳng với hệ tọa độ Oxy cho tứ giác ABCD nội tiếp đường tròn đường kính BD. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các đường thẳng BD và CD. Biết A(4;6), đường thẳng HK có phương trình 3x – 4y – 4 = 0, điểm C thuộc đường thẳng d1: x + y – 2 = 0 và điểm B thuộc đường thẳng d2: x – 2y – 2 = 0, điểm K có hoành độ nhỏ hơn 1. Tìm tọa độ các điểm B và C. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi lớp 12 môn Toán cấp trường năm 2017 2018 trường Lý Thái Tổ Bắc Ninh
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán cấp trường năm 2017 2018 trường Lý Thái Tổ Bắc Ninh Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 cấp trường năm 2017 – 2018 trường Lý Thái Tổ – Bắc Ninh gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho tam giác ABC vuông cân tại A, có trọng tâm G. Gọi E, H lần lượt là trung điểm của các cạnh AB, BC; D là điểm đối xứng với H qua A, I là giao điểm của đường thẳng AB và đường thẳng CD. Biết điểm D (-1; -1), đường thẳng IG có phương trình 6x – 3y – 7 = 0 và điểm E có hoành độ bằng 1. Tìm tọa độ các đỉnh của tam giác ABC. + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất. [ads] + Cho hình chóp S.ABC có mặt đáy là tam giác đều cạnh a và hình chiếu của S lên mặt phẳng (ABC) là điểm H nằm trong tam giác ABC sao cho góc AHB = 150 độ, góc BHC = 120 độ, góc CHA = 90 độ. Biết tổng diện tích các mặt cầu ngoại tiếp các hình chóp S.HAB, S.HBC, S.HAC bằng 31/3.πa^2. Tính theo a thể tích khối chóp S.ABC. + Cho hàm số y = (x – 2)/(x + 1) có đồ thị là (C) và M là điểm thuộc (C). Tiếp tuyến của (C) tại M cắt hai đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của hai tiệm cận. Tìm tọa độ điểm M sao cho bán kính đường tròn nội tiếp tam giác IAB lớn nhất.
Đề thi chọn HSG lớp 12 môn Toán năm học 2017 2018 trường THPT Lê Quý Đôn Thái Bình
Nội dung Đề thi chọn HSG lớp 12 môn Toán năm học 2017 2018 trường THPT Lê Quý Đôn Thái Bình Bản PDF Đề thi chọn HSG Toán lớp 12 năm học 2017 – 2018 trường THPT Lê Quý Đôn – Thái Bình gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi : + Cho hình chữ nhật ABCD. Gọi H là hình chiếu vuông góc của B lên AC; M, N lần lượt là trung điểm của AH, BH. Trên cạnh CD lấy điểm K sao cho MNCK là hình bình hành. Biết M(9/5; 2/5), K(9; 2) và các đỉnh B, C lần lượt nằm trên các đường thẳng d1: 2x – y + 2 = 0; d2: x – y – 5 = 0. Tìm toạ độ các đỉnh của hình chữ nhật ABCD biết hoành độ điểm C lớn hơn 4. [ads] 2) Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác vuông tại C, BC = 3a, AC = 4a, cạnh BB’ = 2√22a/3. Hình chiếu vuông góc của B’ trên (ABC) trùng với trọng tâm tam giác ABC. Tính theo a khoảng cách giữa hai đường thẳng BB’ và AC’. 3) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 1, góc BAD = 60 độ, SA = SB = SD = 1. Gọi M, N là hai điểm lần lượt thuộc các cạnh AB và AD sao cho mp(SMN) vuông góc với (ABCD). Đặt AM = x, AN = y, tìm x, y để diện tích toàn phần của tứ diện SAMN nhỏ nhất.
Đề thi chọn đội tuyển dự thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Bắc Ninh
Nội dung Đề thi chọn đội tuyển dự thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Bắc Ninh Bản PDF Đề thi chọn đội tuyển dự thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho tam giác ABC nội tiếp đường tròn (O), có trực tâm H. Gọi M, N, P là trung điểm của BC, CA, AB. Đường tròn đường kính AH và đường tròn (O) cắt nhau tại T ≠ A. AT cắt BC tại Q. NP cắt tiếp tuyến tại A của đường tròn (O) tại R. a) Chứng minh rằng QR vuông góc OH b) Đường thẳng đối xứng với HM qua phân giác trong góc BHC cắt đoạn thẳng BC tại I. Gọi K là hình chiếu của A trên HI. Chứng minh rằng đường tròn ngoại tiếp tam giác MIK tiếp xúc với đường tròn (O). [ads] + Cho S là tập gồm 2017 số nguyên tố phân biệt và M là tập gồm 2018 số tự nhiên phân biệt sao cho mỗi số trong M đều không là số chính phương và chỉ có ước nguyên tố thuộc S. Chứng minh rằng có thể chọn ra trong M một số số có tích là một số chính phương. + Có 32 học sinh tham gia 33 câu lạc bộ, mỗi học sinh có thể tham gia nhiều câu lạc bộ và mỗi câu lạc bộ có đúng 3 học sinh tham gia. Biết rằng không có 2 câu lạc bộ nào có 3 học sinh giống nhau. Chứng minh rằng có 2 câu lạc bộ chung nhau đúng 1 học sinh.
Đề thi chọn đội dự tuyển thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Đồng Nai
Nội dung Đề thi chọn đội dự tuyển thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Đồng Nai Bản PDF Đề thi chọn đội dự tuyển thi HSG Quốc gia THPT 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận, thời gian làm bài 180 phút.